Yoxas commited on
Commit
53297e2
·
verified ·
1 Parent(s): 62b261c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -32,6 +32,7 @@ llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-h
32
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == 'cuda' else -1)
33
 
34
  # Define the function to find the most relevant document using FAISS
 
35
  def retrieve_relevant_doc(query):
36
  query_embedding = sentence_model.encode(query, convert_to_tensor=False)
37
  _, indices = index.search(np.array([query_embedding]), k=1)
@@ -39,6 +40,7 @@ def retrieve_relevant_doc(query):
39
  return df.iloc[best_match_idx]['Abstract']
40
 
41
  # Define the function to generate a response
 
42
  def generate_response(query):
43
  relevant_doc = retrieve_relevant_doc(query)
44
  if len(relevant_doc) > 512: # Truncate long documents
@@ -52,7 +54,7 @@ def generate_response(query):
52
  # Create a Gradio interface
53
  iface = gr.Interface(
54
  fn=generate_response,
55
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
56
  outputs="text",
57
  title="RAG Chatbot",
58
  description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA."
 
32
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == 'cuda' else -1)
33
 
34
  # Define the function to find the most relevant document using FAISS
35
+ @spaces.GPU(duration=120)
36
  def retrieve_relevant_doc(query):
37
  query_embedding = sentence_model.encode(query, convert_to_tensor=False)
38
  _, indices = index.search(np.array([query_embedding]), k=1)
 
40
  return df.iloc[best_match_idx]['Abstract']
41
 
42
  # Define the function to generate a response
43
+ @spaces.GPU(duration=120)
44
  def generate_response(query):
45
  relevant_doc = retrieve_relevant_doc(query)
46
  if len(relevant_doc) > 512: # Truncate long documents
 
54
  # Create a Gradio interface
55
  iface = gr.Interface(
56
  fn=generate_response,
57
+ inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
58
  outputs="text",
59
  title="RAG Chatbot",
60
  description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA."