Spaces:
Runtime error
Runtime error
import librosa | |
import numpy as np | |
from torch.utils import data | |
# 加载并预处理音频 | |
def load_audio(audio_path, mode='train', win_length=400, sr=16000, hop_length=160, n_fft=512, spec_len=257): | |
# 读取音频数据 | |
wav, sr_ret = librosa.load(audio_path, sr=sr) | |
# 数据拼接 | |
if mode == 'train': | |
extended_wav = np.append(wav, wav) | |
if np.random.random() < 0.3: | |
extended_wav = extended_wav[::-1] | |
else: | |
extended_wav = np.append(wav, wav[::-1]) | |
# 计算短时傅里叶变换 | |
linear = librosa.stft(extended_wav, n_fft=n_fft, win_length=win_length, hop_length=hop_length) | |
mag, _ = librosa.magphase(linear) | |
freq, freq_time = mag.shape | |
assert freq_time >= spec_len, "非静音部分长度不能低于1.3s" | |
if mode == 'train': | |
# 随机裁剪 | |
rand_time = np.random.randint(0, freq_time - spec_len) | |
spec_mag = mag[:, rand_time:rand_time + spec_len] | |
else: | |
spec_mag = mag[:, :spec_len] | |
mean = np.mean(spec_mag, 0, keepdims=True) | |
std = np.std(spec_mag, 0, keepdims=True) | |
spec_mag = (spec_mag - mean) / (std + 1e-5) | |
spec_mag = spec_mag[np.newaxis, :] | |
return spec_mag | |
# 数据加载器 | |
class CustomDataset(data.Dataset): | |
def __init__(self, data_list_path, model='train', spec_len=257): | |
super(CustomDataset, self).__init__() | |
with open(data_list_path, 'r') as f: | |
self.lines = f.readlines() | |
self.model = model | |
self.spec_len = spec_len | |
def __getitem__(self, idx): | |
audio_path, label = self.lines[idx].replace('\n', '').split('\t') | |
spec_mag = load_audio(audio_path, mode=self.model, spec_len=self.spec_len) | |
return spec_mag, np.array(int(label), dtype=np.int64) | |
def __len__(self): | |
return len(self.lines) | |