YuAnthony's picture
first commit
3be9ff2
import librosa
import numpy as np
from torch.utils import data
# 加载并预处理音频
def load_audio(audio_path, mode='train', win_length=400, sr=16000, hop_length=160, n_fft=512, spec_len=257):
# 读取音频数据
wav, sr_ret = librosa.load(audio_path, sr=sr)
# 数据拼接
if mode == 'train':
extended_wav = np.append(wav, wav)
if np.random.random() < 0.3:
extended_wav = extended_wav[::-1]
else:
extended_wav = np.append(wav, wav[::-1])
# 计算短时傅里叶变换
linear = librosa.stft(extended_wav, n_fft=n_fft, win_length=win_length, hop_length=hop_length)
mag, _ = librosa.magphase(linear)
freq, freq_time = mag.shape
assert freq_time >= spec_len, "非静音部分长度不能低于1.3s"
if mode == 'train':
# 随机裁剪
rand_time = np.random.randint(0, freq_time - spec_len)
spec_mag = mag[:, rand_time:rand_time + spec_len]
else:
spec_mag = mag[:, :spec_len]
mean = np.mean(spec_mag, 0, keepdims=True)
std = np.std(spec_mag, 0, keepdims=True)
spec_mag = (spec_mag - mean) / (std + 1e-5)
spec_mag = spec_mag[np.newaxis, :]
return spec_mag
# 数据加载器
class CustomDataset(data.Dataset):
def __init__(self, data_list_path, model='train', spec_len=257):
super(CustomDataset, self).__init__()
with open(data_list_path, 'r') as f:
self.lines = f.readlines()
self.model = model
self.spec_len = spec_len
def __getitem__(self, idx):
audio_path, label = self.lines[idx].replace('\n', '').split('\t')
spec_mag = load_audio(audio_path, mode=self.model, spec_len=self.spec_len)
return spec_mag, np.array(int(label), dtype=np.int64)
def __len__(self):
return len(self.lines)