Spaces:
Runtime error
Runtime error
File size: 17,745 Bytes
2d5f249 96d77c3 2d5f249 c5b04dc 2d5f249 96d77c3 2d5f249 de9b060 2d5f249 8a246ed de9b060 2d5f249 96d77c3 2d5f249 f836225 2d5f249 f836225 2d5f249 dbb034d 2d5f249 dbb034d 2d5f249 dbb034d 2d5f249 dbb034d 2d5f249 dbb034d 2d5f249 f5e8b77 2d5f249 daafd12 8ec33ea 2d5f249 96d77c3 2d5f249 96d77c3 2d5f249 f836225 2d5f249 c0b5d8f 2d5f249 f598b6f 96d77c3 f598b6f 96d77c3 f598b6f 2d5f249 daafd12 f598b6f 8ec33ea 2d5f249 de9b060 2d5f249 dbb034d 2d5f249 96d77c3 8ec33ea 2d5f249 8ec33ea 96d77c3 b0f2345 c0b5d8f cfde81c fe5fe63 de9b060 96d77c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
import gc
import logging
from lib.common.config import cfg
from lib.dataset.mesh_util import (
load_checkpoint,
update_mesh_shape_prior_losses,
blend_rgb_norm,
unwrap,
remesh,
tensor2variable,
)
from lib.dataset.TestDataset import TestDataset
from lib.common.render import query_color
from lib.net.local_affine import LocalAffine
from pytorch3d.structures import Meshes
from apps.ICON import ICON
from termcolor import colored
import numpy as np
from PIL import Image
import trimesh
import numpy as np
from tqdm import tqdm
import torch
torch.backends.cudnn.benchmark = True
logging.getLogger("trimesh").setLevel(logging.ERROR)
def generate_model(in_path, model_type):
torch.cuda.empty_cache()
if model_type == 'ICON':
model_type = 'icon-filter'
else:
model_type = model_type.lower()
config_dict = {'loop_smpl': 100,
'loop_cloth': 200,
'patience': 5,
'out_dir': './results',
'hps_type': 'pymaf',
'config': f"./configs/{model_type}.yaml"}
# cfg read and merge
cfg.merge_from_file(config_dict['config'])
cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")
os.makedirs(config_dict['out_dir'], exist_ok=True)
cfg_show_list = [
"test_gpus",
[0],
"mcube_res",
256,
"clean_mesh",
True,
]
cfg.merge_from_list(cfg_show_list)
cfg.freeze()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device(f"cuda:0")
# load model and dataloader
model = ICON(cfg)
model = load_checkpoint(model, cfg)
dataset_param = {
'image_path': in_path,
'seg_dir': None,
'has_det': True, # w/ or w/o detection
'hps_type': 'pymaf' # pymaf/pare/pixie
}
if config_dict['hps_type'] == "pixie" and "pamir" in config_dict['config']:
print(colored("PIXIE isn't compatible with PaMIR, thus switch to PyMAF", "red"))
dataset_param["hps_type"] = "pymaf"
dataset = TestDataset(dataset_param, device)
print(colored(f"Dataset Size: {len(dataset)}", "green"))
pbar = tqdm(dataset)
for data in pbar:
pbar.set_description(f"{data['name']}")
in_tensor = {"smpl_faces": data["smpl_faces"], "image": data["image"]}
# The optimizer and variables
optimed_pose = torch.tensor(
data["body_pose"], device=device, requires_grad=True
) # [1,23,3,3]
optimed_trans = torch.tensor(
data["trans"], device=device, requires_grad=True
) # [3]
optimed_betas = torch.tensor(
data["betas"], device=device, requires_grad=True
) # [1,10]
optimed_orient = torch.tensor(
data["global_orient"], device=device, requires_grad=True
) # [1,1,3,3]
optimizer_smpl = torch.optim.SGD(
[optimed_pose, optimed_trans, optimed_betas, optimed_orient],
lr=1e-3,
momentum=0.9,
)
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_smpl,
mode="min",
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=config_dict['patience'],
)
losses = {
# Cloth: Normal_recon - Normal_pred
"cloth": {"weight": 1e1, "value": 0.0},
# Cloth: [RT]_v1 - [RT]_v2 (v1-edge-v2)
"stiffness": {"weight": 1e5, "value": 0.0},
# Cloth: det(R) = 1
"rigid": {"weight": 1e5, "value": 0.0},
# Cloth: edge length
"edge": {"weight": 0, "value": 0.0},
# Cloth: normal consistency
"nc": {"weight": 0, "value": 0.0},
# Cloth: laplacian smoonth
"laplacian": {"weight": 1e2, "value": 0.0},
# Body: Normal_pred - Normal_smpl
"normal": {"weight": 1e0, "value": 0.0},
# Body: Silhouette_pred - Silhouette_smpl
"silhouette": {"weight": 1e0, "value": 0.0},
}
# smpl optimization
loop_smpl = tqdm(range(config_dict['loop_smpl']))
for _ in loop_smpl:
optimizer_smpl.zero_grad()
if dataset_param["hps_type"] != "pixie":
smpl_out = dataset.smpl_model(
betas=optimed_betas,
body_pose=optimed_pose,
global_orient=optimed_orient,
pose2rot=False,
)
smpl_verts = ((smpl_out.vertices) +
optimed_trans) * data["scale"]
else:
smpl_verts, _, _ = dataset.smpl_model(
shape_params=optimed_betas,
expression_params=tensor2variable(data["exp"], device),
body_pose=optimed_pose,
global_pose=optimed_orient,
jaw_pose=tensor2variable(data["jaw_pose"], device),
left_hand_pose=tensor2variable(
data["left_hand_pose"], device),
right_hand_pose=tensor2variable(
data["right_hand_pose"], device),
)
smpl_verts = (smpl_verts + optimed_trans) * data["scale"]
# render optimized mesh (normal, T_normal, image [-1,1])
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
smpl_verts *
torch.tensor([1.0, -1.0, -1.0]
).to(device), in_tensor["smpl_faces"]
)
T_mask_F, T_mask_B = dataset.render.get_silhouette_image()
with torch.no_grad():
in_tensor["normal_F"], in_tensor["normal_B"] = model.netG.normal_filter(
in_tensor
)
diff_F_smpl = torch.abs(
in_tensor["T_normal_F"] - in_tensor["normal_F"])
diff_B_smpl = torch.abs(
in_tensor["T_normal_B"] - in_tensor["normal_B"])
losses["normal"]["value"] = (diff_F_smpl + diff_B_smpl).mean()
# silhouette loss
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
gt_arr = torch.cat(
[in_tensor["normal_F"][0], in_tensor["normal_B"][0]], dim=2
).permute(1, 2, 0)
gt_arr = ((gt_arr + 1.0) * 0.5).to(device)
bg_color = (
torch.Tensor([0.5, 0.5, 0.5]).unsqueeze(
0).unsqueeze(0).to(device)
)
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
diff_S = torch.abs(smpl_arr - gt_arr)
losses["silhouette"]["value"] = diff_S.mean()
# Weighted sum of the losses
smpl_loss = 0.0
pbar_desc = "Body Fitting --- "
for k in ["normal", "silhouette"]:
pbar_desc += f"{k}: {losses[k]['value'] * losses[k]['weight']:.3f} | "
smpl_loss += losses[k]["value"] * losses[k]["weight"]
pbar_desc += f"Total: {smpl_loss:.3f}"
loop_smpl.set_description(pbar_desc)
smpl_loss.backward()
optimizer_smpl.step()
scheduler_smpl.step(smpl_loss)
in_tensor["smpl_verts"] = smpl_verts * \
torch.tensor([1.0, 1.0, -1.0]).to(device)
# visualize the optimization process
# 1. SMPL Fitting
# 2. Clothes Refinement
os.makedirs(os.path.join(config_dict['out_dir'], cfg.name,
"refinement"), exist_ok=True)
# visualize the final results in self-rotation mode
os.makedirs(os.path.join(config_dict['out_dir'],
cfg.name, "vid"), exist_ok=True)
# final results rendered as image
# 1. Render the final fitted SMPL (xxx_smpl.png)
# 2. Render the final reconstructed clothed human (xxx_cloth.png)
# 3. Blend the original image with predicted cloth normal (xxx_overlap.png)
os.makedirs(os.path.join(config_dict['out_dir'],
cfg.name, "png"), exist_ok=True)
# final reconstruction meshes
# 1. SMPL mesh (xxx_smpl.obj)
# 2. SMPL params (xxx_smpl.npy)
# 3. clohted mesh (xxx_recon.obj)
# 4. remeshed clothed mesh (xxx_remesh.obj)
# 5. refined clothed mesh (xxx_refine.obj)
os.makedirs(os.path.join(config_dict['out_dir'],
cfg.name, "obj"), exist_ok=True)
norm_pred_F = (
((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
norm_pred_B = (
((in_tensor["normal_B"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
norm_orig_F = unwrap(norm_pred_F, data)
norm_orig_B = unwrap(norm_pred_B, data)
mask_orig = unwrap(
np.repeat(
data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
).astype(np.uint8),
data,
)
rgb_norm_F = blend_rgb_norm(data["ori_image"], norm_orig_F, mask_orig)
rgb_norm_B = blend_rgb_norm(data["ori_image"], norm_orig_B, mask_orig)
Image.fromarray(
np.concatenate(
[data["ori_image"].astype(np.uint8), rgb_norm_F, rgb_norm_B], axis=1)
).save(os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png"))
smpl_obj = trimesh.Trimesh(
in_tensor["smpl_verts"].detach().cpu()[0] *
torch.tensor([1.0, -1.0, 1.0]),
in_tensor['smpl_faces'].detach().cpu()[0],
process=False,
maintains_order=True
)
smpl_obj.visual.vertex_colors = (smpl_obj.vertex_normals+1.0)*255.0*0.5
smpl_obj.export(
f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj")
smpl_obj.export(
f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb")
smpl_info = {'betas': optimed_betas,
'pose': optimed_pose,
'orient': optimed_orient,
'trans': optimed_trans}
np.save(
f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy", smpl_info, allow_pickle=True)
# ------------------------------------------------------------------------------------------------------------------
# cloth optimization
# cloth recon
in_tensor.update(
dataset.compute_vis_cmap(
in_tensor["smpl_verts"][0], in_tensor["smpl_faces"][0]
)
)
if cfg.net.prior_type == "pamir":
in_tensor.update(
dataset.compute_voxel_verts(
optimed_pose,
optimed_orient,
optimed_betas,
optimed_trans,
data["scale"],
)
)
with torch.no_grad():
verts_pr, faces_pr, _ = model.test_single(in_tensor)
recon_obj = trimesh.Trimesh(
verts_pr, faces_pr, process=False, maintains_order=True
)
recon_obj.visual.vertex_colors = (
recon_obj.vertex_normals+1.0)*255.0*0.5
recon_obj.export(
os.path.join(config_dict['out_dir'], cfg.name,
f"obj/{data['name']}_recon.obj")
)
# Isotropic Explicit Remeshing for better geometry topology
verts_refine, faces_refine = remesh(os.path.join(config_dict['out_dir'], cfg.name,
f"obj/{data['name']}_recon.obj"), 0.5, device)
# define local_affine deform verts
mesh_pr = Meshes(verts_refine, faces_refine).to(device)
local_affine_model = LocalAffine(
mesh_pr.verts_padded().shape[1], mesh_pr.verts_padded().shape[0], mesh_pr.edges_packed()).to(device)
optimizer_cloth = torch.optim.Adam(
[{'params': local_affine_model.parameters()}], lr=1e-4, amsgrad=True)
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_cloth,
mode="min",
factor=0.1,
verbose=0,
min_lr=1e-5,
patience=config_dict['patience'],
)
final = None
if config_dict['loop_cloth'] > 0:
loop_cloth = tqdm(range(config_dict['loop_cloth']))
for _ in loop_cloth:
optimizer_cloth.zero_grad()
deformed_verts, stiffness, rigid = local_affine_model(
verts_refine.to(device), return_stiff=True)
mesh_pr = mesh_pr.update_padded(deformed_verts)
# losses for laplacian, edge, normal consistency
update_mesh_shape_prior_losses(mesh_pr, losses)
in_tensor["P_normal_F"], in_tensor["P_normal_B"] = dataset.render_normal(
mesh_pr.verts_padded(), mesh_pr.faces_padded())
diff_F_cloth = torch.abs(
in_tensor["P_normal_F"] - in_tensor["normal_F"])
diff_B_cloth = torch.abs(
in_tensor["P_normal_B"] - in_tensor["normal_B"])
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean()
losses["stiffness"]["value"] = torch.mean(stiffness)
losses["rigid"]["value"] = torch.mean(rigid)
# Weighted sum of the losses
cloth_loss = torch.tensor(0.0, requires_grad=True).to(device)
pbar_desc = "Cloth Refinement --- "
for k in losses.keys():
if k not in ["normal", "silhouette"] and losses[k]["weight"] > 0.0:
cloth_loss = cloth_loss + \
losses[k]["value"] * losses[k]["weight"]
pbar_desc += f"{k}:{losses[k]['value']* losses[k]['weight']:.5f} | "
pbar_desc += f"Total: {cloth_loss:.5f}"
loop_cloth.set_description(pbar_desc)
# update params
cloth_loss.backward()
optimizer_cloth.step()
scheduler_cloth.step(cloth_loss)
final = trimesh.Trimesh(
mesh_pr.verts_packed().detach().squeeze(0).cpu(),
mesh_pr.faces_packed().detach().squeeze(0).cpu(),
process=False, maintains_order=True
)
# only with front texture
tex_colors = query_color(
mesh_pr.verts_packed().detach().squeeze(0).cpu(),
mesh_pr.faces_packed().detach().squeeze(0).cpu(),
in_tensor["image"],
device=device,
)
# full normal textures
norm_colors = (mesh_pr.verts_normals_padded().squeeze(
0).detach().cpu() + 1.0) * 0.5 * 255.0
final.visual.vertex_colors = tex_colors
final.export(
f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj")
final.visual.vertex_colors = norm_colors
final.export(
f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb")
# always export visualized video regardless of the cloth refinment
verts_lst = [smpl_obj.vertices, final.vertices]
faces_lst = [smpl_obj.faces, final.faces]
# self-rotated video
dataset.render.load_meshes(
verts_lst, faces_lst)
dataset.render.get_rendered_video(
[data["ori_image"], rgb_norm_F, rgb_norm_B],
os.path.join(config_dict['out_dir'], cfg.name,
f"vid/{data['name']}_cloth.mp4"),
)
smpl_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj"
smpl_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb"
smpl_npy_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy"
refine_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj"
refine_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb"
video_path = os.path.join(
config_dict['out_dir'], cfg.name, f"vid/{data['name']}_cloth.mp4")
overlap_path = os.path.join(
config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png")
# clean all the variables
for element in dir():
if 'path' not in element:
del locals()[element]
gc.collect()
torch.cuda.empty_cache()
return [smpl_glb_path, smpl_obj_path,smpl_npy_path,
refine_glb_path, refine_obj_path,
video_path, video_path, overlap_path]
|