File size: 10,189 Bytes
4585e41
 
 
 
 
 
 
 
 
 
 
 
 
 
b3cb31e
c5f4ba2
4585e41
 
 
 
 
 
 
 
 
c5f4ba2
 
b3cb31e
4585e41
 
 
 
 
 
 
 
c5f4ba2
 
0ad5e8b
 
 
b3cb31e
c5f4ba2
 
 
0ad5e8b
 
c5f4ba2
 
4585e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f4ba2
4585e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075527
b3cb31e
 
c5f4ba2
 
5075527
4585e41
 
bd5ce41
c5f4ba2
4585e41
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import io
import os

import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging
import os
import paddle
import requests
import utils
from spleeter import Separator
import time  
from datetime import datetime, timedelta  

build_dir=os.getcwd()
if build_dir == "/home/aistudio":
    build_dir += "/build"

model_dir=build_dir+'/trained_models'

model_list_path = model_dir + "/model_list.txt"

current_time = datetime.now()  
one_hour_later = current_time + timedelta(hours=1)  

# 筛选出文件夹
models = []
for filename in os.listdir(model_dir):
    # 判断文件名是否以 '.pdparams' 结尾,并且不包含后缀部分
    if filename.endswith('.pdparams') and os.path.splitext(filename)[0].isalpha():
        models.append(os.path.splitext(filename)[0])
cache_model = {}

def callback(text):  
    if text == "reboot":  
        os._exit(0)
        current_time = datetime.now()  
        one_hour_later = current_time + timedelta(hours=1)  
    else:  
        global start_time  
        if time.time() - start_time >= 3600:
            os._exit(0)
            current_time = datetime.now()  
            one_hour_later = current_time + timedelta(hours=1)  
        else:
            return text  

def separate_fn(song_input):
    try:
        if song_input is None:
            return "请上传歌曲",None,None,None,None
        params_2stems = {
        'sample_rate': 44100,
        'frame_length': 4096,
        'frame_step': 1024,
        'T': 512,
        'F': 1024,
        'num_instruments': ['vocals', 'instrumental'],
        'output_dir': build_dir+'/output_2stems',
        'checkpoint_path': build_dir+'/spleeter',
        'use_elu': False}
        sampling_rate, song = song_input
        soundfile.write("temp.wav", song, sampling_rate, format="wav")
        # 初始化分离器
        sep = Separator(params_2stems)
        sep.separate('temp.wav')
        vocal_path = params_2stems["output_dir"]+"/temp-vocals.wav"
        instrumental_path = params_2stems["output_dir"]+"/temp-instrumental.wav"
        return "分离成功,请继续前往体验【转换】和【混音】",vocal_path,instrumental_path,vocal_path,instrumental_path
    except Exception as e:
        import traceback
        return traceback.format_exc() , None,None,None,None


def convert_fn(model_name, input_audio,input_audio_micro, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
    try:
        if model_name in cache_model:
            model = cache_model[model_name]
        else:
            if paddle.device.is_compiled_with_cuda()==False and len(cache_model)!=0:
                return f"目前运行环境为CPU,受制于平台算力,每次启动本项目只允许加载1个模型,当前已加载{next(iter(cache_model))}",None,None
            config_path = f"{build_dir}/trained_models/config.json"
            model = Svc(f"{build_dir}/trained_models/{model_name}.pdparams", config_path,mode="test")
            cache_model[model_name] = model
        if input_audio is None and input_audio_micro is None:
            return "请上传音频", None,None
        if input_audio_micro is not None:
            input_audio = input_audio_micro
        sampling_rate, audio = input_audio
        duration = audio.shape[0] / sampling_rate
        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != 16000:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
        print(audio.shape)
        out_wav_path = "temp.wav"
        soundfile.write(out_wav_path, audio, 16000, format="wav")
        print(cluster_ratio, auto_f0, noise_scale)
        _audio = model.slice_inference(out_wav_path, model_name, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
        del model
        return "转换成功,请继续前往体验【混音】", (44100, _audio),(44100, _audio)
    except Exception as e:
        import traceback
        return traceback.format_exc() , None,None

def compose_fn(input_vocal,input_instrumental,mixing_ratio=0.5):
    try:
        outlog = "混音成功"
        if input_vocal is None:
            return "请上传人声", None
        if input_instrumental is None:
            return "请上传伴奏", None
        vocal_sampling_rate, vocal = input_vocal
        vocal_duration = vocal.shape[0] / vocal_sampling_rate
        vocal = (vocal / np.iinfo(vocal.dtype).max).astype(np.float32)
        if len(vocal.shape) > 1:
            vocal = librosa.to_mono(vocal.transpose(1, 0))
        if vocal_sampling_rate != 44100:
            vocal = librosa.resample(vocal, orig_sr=vocal_sampling_rate, target_sr=44100)

        instrumental_sampling_rate, instrumental = input_instrumental
        instrumental_duration = instrumental.shape[0] / instrumental_sampling_rate
        instrumental = (instrumental / np.iinfo(instrumental.dtype).max).astype(np.float32)
        if len(instrumental.shape) > 1:
            instrumental = librosa.to_mono(instrumental.transpose(1, 0))
        if instrumental_sampling_rate != 44100:
            instrumental = librosa.resample(instrumental, orig_sr=instrumental_sampling_rate, target_sr=44100)
        if len(vocal)!=len(instrumental):
            min_length = min(len(vocal),len(instrumental))
            instrumental = instrumental[:min_length]
            vocal = vocal[:min_length]
            outlog = "人声伴奏长度不一致,已自动截断较长的音频"

        mixed_audio = (1 - mixing_ratio) * vocal + mixing_ratio * instrumental
        mixed_audio_data = mixed_audio.astype(np.float32)
        return outlog,(44100,mixed_audio_data)
    except Exception as e:
        import traceback
        return traceback.format_exc() , None


app = gr.Blocks()

with app:
    gr.Markdown('<h1 style="text-align: center;">SVC歌声转换全流程体验(伴奏分离,转换,混音)</h1>')
    with gr.Tabs() as tabs:
        with gr.TabItem("人声伴奏分离"):
            gr.Markdown('<p>该项目人声分离的效果弱于UVR5,如自备分离好的伴奏和人声可跳过该步骤</p>')
            song_input = gr.Audio(label="上传歌曲(tips:上传后点击右上角✏可以进行歌曲剪辑)",interactive=True)
            gr.Examples(examples=[build_dir+"/examples/song/blue.wav",build_dir+"/examples/song/Counter_clockwise_Clock.wav",build_dir+"/examples/song/one_last_kiss.wav"],inputs=song_input,label="歌曲样例")

            btn_separate = gr.Button("人声伴奏分离", variant="primary")
            text_output1 = gr.Textbox(label="输出信息")
            vocal_output1 = gr.Audio(label="输出人声",interactive=False)
            instrumental_output1 = gr.Audio(label="输出伴奏",interactive=False)
        with gr.TabItem("转换"):
            model_name = gr.Dropdown(label="模型", choices=models, value="纳西妲")
            vocal_input1 = gr.Audio(label="上传人声",interactive=True)
            gr.Examples(examples=[build_dir+"/examples/vocals/blue_vocal.wav",build_dir+"/examples/vocals/Counter_clockwise_Clock_vocal.wav",build_dir+"/examples/vocals/one_last_kiss_vocal.wav"],inputs=vocal_input1,label="人声样例")
            btn_use_separate = gr.Button("使用【人声伴奏分离】分离的人声")
            micro_input = gr.Audio(label="麦克风输入(优先于上传的人声)",source="microphone",interactive=True)
            vc_transform = gr.Number(label="变调(半音数量,升八度12降八度-12)", value=0)
            cluster_ratio = gr.Number(label="聚类模型混合比例", value=0,visible=False)
            auto_f0 = gr.Checkbox(label="自动预测音高(转换歌声时不要打开,会严重跑调)", value=False)
            slice_db = gr.Number(label="静音分贝阈值(嘈杂的音频可以-30,干声保留呼吸可以-50)", value=-50)
            noise_scale = gr.Number(label="noise_scale", value=0.2)
            btn_convert = gr.Button("转换", variant="primary")
            text_output2 = gr.Textbox(label="输出信息")
            vc_output2 = gr.Audio(label="输出音频",interactive=False)

        with gr.TabItem("混音"):
            vocal_input2 = gr.Audio(label="上传人声",interactive=True)
            btn_use_convert = gr.Button("使用【转换】输出的人声")
            instrumental_input1 = gr.Audio(label="上传伴奏")
            gr.Examples(examples=[build_dir+"/examples/instrumental/blue_instrumental.wav",build_dir+"/examples/instrumental/Counter_clockwise_Clock_instrumental.wav",build_dir+"/examples/instrumental/one_last_kiss_instrumental.wav"],inputs=instrumental_input1,label="伴奏样例")
            btn_use_separate2 = gr.Button("使用【人声伴奏分离】分离的伴奏")
            mixing_ratio = gr.Slider(0, 1, value=0.75,step=0.01,label="混音比例(人声:伴奏)", info="人声:伴奏")
            btn_compose = gr.Button("混音", variant="primary")
            text_output3 = gr.Textbox(label="输出信息")
            song_output = gr.Audio(label="输出歌曲",interactive=False)

        with gr.TabItem("设置"):
            start_time = time.time()  
            output = gr.Textbox(label="输出",placeholder=f"距离下一次允许重启时间为{one_hour_later}")  
            btn_reboot = gr.Button("重启",variant="primary") 
        btn_separate.click(separate_fn, song_input, [text_output1, vocal_output1,instrumental_output1,vocal_input1,instrumental_input1])
        btn_convert.click(convert_fn, [model_name, vocal_input1,micro_input,vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [text_output2, vc_output2,vocal_input2])
        btn_compose.click(compose_fn,[vocal_input2,instrumental_input1,mixing_ratio],[text_output3,song_output])
        btn_reboot.click(callback,output)
        btn_use_convert.click(lambda x:x,vc_output2,vocal_input2)
        btn_use_separate.click(lambda x:x,vocal_output1,vocal_input1)
        btn_use_separate2.click(lambda x:x,instrumental_output1,instrumental_input1)

app.launch()