Spaces:
Sleeping
Sleeping
File size: 6,410 Bytes
4585e41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import io
import logging
import time
from pathlib import Path
import librosa
import matplotlib.pyplot as plt
import numpy as np
import soundfile
from inference import infer_tool
from inference import slicer
from inference.infer_tool import Svc
logging.getLogger('numba').setLevel(logging.WARNING)
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
# 这里是推理用到的所有参数,从这里修改参数即可
模型路径:str = "./logs/44k/G_10000.pdparams" # 模型路径
推理文件列表:list = ["1.wav"] # wav文件名列表,放在raw文件夹下
音高调整:list = [0] # 音高调整,支持正负(半音)
合成目标说话人名称:list = ['yuuka'] # 合成目标说话人名称
自动预测音高:bool = False # 语音转换自动预测音高,转换歌声时不要打开这个会严重跑调
聚类模型路径:str = "logs/44k/kmeans_10000.pdparams" # 聚类模型路径,如果没有训练聚类则随便填
聚类方案占比:float = 0 # 聚类方案占比,范围0-1,若没有训练聚类模型则填0即可
静音分贝:int = -40 # 静音分贝阈值,默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50
推理设备:str or None = None # 推理设备,None则为自动选择cpu和gpu
音频输出格式:str = 'flac' # 音频输出格式
噪音比例:float = 0.4 # 声音有点电的话可以尝试调高这个,但是会降低音质,较为玄学
def main():
import argparse
parser = argparse.ArgumentParser(description='飞桨sovits4 推理模块')
parser.add_argument('-m', '--model_path', type=str, default=模型路径, help='模型路径')
parser.add_argument('-c', '--config_path', type=str, default="./logs/44k/config.json", help='配置文件路径')
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=推理文件列表, help='wav文件名列表,放在raw文件夹下')
parser.add_argument('-t', '--trans', type=int, nargs='+', default=音高调整, help='音高调整,支持正负(半音)')
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=合成目标说话人名称, help='合成目标说话人名称')
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=自动预测音高,
help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
parser.add_argument('-cm', '--cluster_model_path', type=str, default=聚类模型路径, help='聚类模型路径,如果没有训练聚类则随便填')
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=聚类方案占比, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
parser.add_argument('-sd', '--slice_db', type=int, default=静音分贝, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
parser.add_argument('-d', '--device', type=str, default=推理设备, help='推理设备,None则为自动选择cpu和gpu')
parser.add_argument('-ns', '--noice_scale', type=float, default=噪音比例, help='噪音级别,会影响咬字和音质,较为玄学')
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
parser.add_argument('-wf', '--wav_format', type=str, default=音频输出格式, help='音频输出格式')
args = parser.parse_args()
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
infer_tool.mkdir(["raw", "results"])
clean_names = args.clean_names
trans = args.trans
spk_list = args.spk_list
slice_db = args.slice_db
wav_format = args.wav_format
auto_predict_f0 = args.auto_predict_f0
cluster_infer_ratio = args.cluster_infer_ratio
noice_scale = args.noice_scale
pad_seconds = args.pad_seconds
infer_tool.fill_a_to_b(trans, clean_names)
for clean_name, tran in zip(clean_names, trans):
raw_audio_path = f"raw/{clean_name}"
if "." not in raw_audio_path:
raw_audio_path += ".wav"
infer_tool.format_wav(raw_audio_path)
wav_path = Path(raw_audio_path).with_suffix('.wav')
chunks = slicer.cut(wav_path, db_thresh=slice_db)
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
for spk in spk_list:
audio = []
for (slice_tag, data) in audio_data:
print(f'#=====分段开始,{round(len(data) / audio_sr, 3)}秒======')
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
if slice_tag:
print('跳过空段')
_audio = np.zeros(length)
else:
# padd
pad_len = int(audio_sr * pad_seconds)
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
raw_path = io.BytesIO()
soundfile.write(raw_path, data, audio_sr, format="wav")
raw_path.seek(0)
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noice_scale=noice_scale
)
_audio = out_audio.detach().cpu().numpy()
pad_len = int(svc_model.target_sample * pad_seconds)
_audio = _audio[pad_len:-pad_len]
audio.extend(list(infer_tool.pad_array(_audio, length)))
key = "auto" if auto_predict_f0 else f"{tran}key"
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
if __name__ == '__main__':
main()
|