File size: 13,690 Bytes
4585e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import logging
import multiprocessing
import time

logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import paddle
#paddle.device.set_device("cpu") #开启可用CPU进行炼丹
trainer:str = "admin" 
from paddle.nn import functional as F
from paddle.io import DataLoader
from visualdl import LogWriter
from paddle.amp import auto_cast, GradScaler

import modules.commons as commons
import utils
from data_utils import TextAudioSpeakerLoader, TextAudioCollate
from models import (
    SynthesizerTrn,
    MultiPeriodDiscriminator,
)
from modules.losses import (
    kl_loss,
    generator_loss, discriminator_loss, feature_loss
)

from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch

paddle.set_flags({'FLAGS_cudnn_exhaustive_search': True}) # 使用穷举搜索方法来选择卷积算法
global_step = 0
trainers:list[str] = []
start_time = time.time()


def main():
    """Assume Single Node Multi GPUs Training Only"""
    #assert torch.cuda.is_available(), "CPU training is not allowed."
    hps = utils.get_hparams()

    n_gpus = paddle.device.cuda.device_count()
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = hps.train.port

    run(n_gpus, hps, )


def run(n_gpus, hps):
    global global_step,trainers,trainer

    trainer = hps.trainer
    rank = 0
    if rank == 0:
        logger = utils.get_logger(hps.model_dir)
        logger.info(hps)
        utils.check_git_hash(hps.model_dir)
        writer = LogWriter(logdir=hps.model_dir)
        writer_eval = LogWriter(logdir=os.path.join(hps.model_dir, "eval"))

    paddle.seed(hps.train.seed)
    paddle.device.set_device('cpu' if paddle.device.get_device() == 'cpu' else 'gpu:' + str(rank))
    collate_fn = TextAudioCollate()
    train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
    num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
    train_loader = DataLoader(dataset = train_dataset,
                             num_workers=num_workers,
                             shuffle=False,
                             batch_size=hps.train.batch_size,
                             collate_fn=collate_fn)
    if rank == 0:
        eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
        eval_loader = DataLoader(dataset = eval_dataset,
                                num_workers = 1,
                                shuffle = False,
                                batch_size = 1,
                                drop_last = False,
                                collate_fn = collate_fn)

    net_g = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model)
    net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
    optim_g = paddle.optimizer.AdamW(
        parameters = net_g.parameters(),
        learning_rate = hps.train.learning_rate,
        beta1 = hps.train.betas[0],
        beta2 = hps.train.betas[1],
        epsilon = hps.train.eps)
    optim_d = paddle.optimizer.AdamW(
        parameters = net_d.parameters(),
        learning_rate = hps.train.learning_rate,
        beta1 = hps.train.betas[0],
        beta2 = hps.train.betas[1],
        epsilon = hps.train.eps)

    skip_optimizer = False
    try:
        _, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pdparams"), net_g,
                                                   optim_g, skip_optimizer)
        _, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pdparams"), net_d,
                                                   optim_d, skip_optimizer)
        if trainer not in trainers:
            trainers.append(trainer)
        epoch_str = max(epoch_str, 1)
        global_step = (epoch_str - 1) * len(train_loader)
    except Exception as e:
        print(e)
        logger.info("加载旧检查点失败……")
        epoch_str = 1
        global_step = 0
    if skip_optimizer:
        epoch_str = 1
        global_step = 0

    scheduler_g = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)
    scheduler_d = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)

    optim_g = paddle.optimizer.AdamW(
        parameters = net_g.parameters(),
        learning_rate = scheduler_g,
        beta1 = hps.train.betas[0],
        beta2 = hps.train.betas[1],
        epsilon = hps.train.eps)
    optim_d = paddle.optimizer.AdamW(
        parameters = net_d.parameters(),
        learning_rate = scheduler_d,
        beta1 = hps.train.betas[0],
        beta2 = hps.train.betas[1],
        epsilon = hps.train.eps)

    scaler = GradScaler(enable = hps.train.fp16_run)

    for epoch in range(epoch_str, hps.train.epochs + 1):
        if rank == 0:
            train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
                               [train_loader, eval_loader], logger, [writer, writer_eval])
        else:
            train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
                               [train_loader, None], None, None)
        scheduler_g.step()
        scheduler_d.step()


def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler:GradScaler, loaders, logger:logging.Logger, writers:list or None):
    net_g, net_d = nets
    optim_g, optim_d = optims
    scheduler_g, scheduler_d = schedulers
    train_loader, eval_loader = loaders
    if writers is not None:
        writer, writer_eval = writers

    # train_loader.batch_sampler.set_epoch(epoch)
    global global_step

    net_g.train()
    net_d.train()
    for batch_idx, items in enumerate(train_loader):
        c, f0, spec, y, spk, lengths, uv = items
        g = spk
        mel = spec_to_mel_torch(
            spec,
            hps.data.filter_length,
            hps.data.n_mel_channels,
            hps.data.sampling_rate,
            hps.data.mel_fmin,
            hps.data.mel_fmax)

        with auto_cast(enable=hps.train.fp16_run):

            y_hat, ids_slice, z_mask, \
            (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
                                                                                spec_lengths=lengths)

            y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
            y_hat_mel = mel_spectrogram_torch(
                y_hat.squeeze(1),
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )
            y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size)  # slice

            # Discriminator
            y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())

            with auto_cast(enable=False):
                loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
                loss_disc_all = loss_disc

        optim_d.clear_grad()
        scaler.scale(loss_disc_all).backward(retain_graph = True) # 将 Tensor 乘上缩放因子,返回缩放后的输出,返回loss然后反向传播
        scaler.unscale_(optim_d) # 将参数的梯度除去缩放比例。
        grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
        scaler.step(optim_d)
        with auto_cast(enable=hps.train.fp16_run):
            # Generator
            y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
            with auto_cast(enable=False):
                loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
                loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
                loss_fm = feature_loss(fmap_r, fmap_g)
                loss_gen, losses_gen = generator_loss(y_d_hat_g)
                loss_lf0 = F.mse_loss(pred_lf0, lf0)
                loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
        optim_g.clear_grad()
        scaler.scale(loss_gen_all).backward(retain_graph = True)
        scaler.unscale_(optim_g)
        grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
        scaler.step(optim_g)
        scaler.update()

        #lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
        #losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
        #logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") # 梅花自己看的~

        if rank == 0:
            if global_step % hps.train.log_interval == 0:
                lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
                losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
                logger.info('训练回合:{} [{:.0f}%]'.format(
                    epoch,
                    100. * batch_idx / len(train_loader)))
                logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}")

                scalar_dict = {"损失/生成器/总损失": loss_gen_all, "损失/判别器/总损失": loss_disc_all, "学习率": lr,
                               "归一化判别器梯度": grad_norm_d, "归一化生成器梯度": grad_norm_g}
                scalar_dict.update({"损失/生成器/特征匹配损失": loss_fm, "损失/生成器/梅尔频谱损失": loss_mel, "损失/生成器/KL散度": loss_kl,
                                    "损失/生成器/基音损失": loss_lf0})

                image_dict = {
                    "切片/原始梅尔频谱图": utils.plot_spectrogram_to_numpy(y_mel[0].detach().numpy()),
                    "切片/生成梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].detach().numpy()),
                    "全部/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].detach().numpy()),
                    "全部/基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
                                                          pred_lf0[0, 0, :].detach().numpy()),
                    "全部/归一化基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
                                                               norm_lf0[0, 0, :].detach().numpy())
                }

                utils.summarize(
                    writer=writer,
                    global_step=global_step,
                    images=image_dict,
                    scalars=scalar_dict
                )
            if global_step % hps.train.eval_interval == 0:
                if hps.clean_logs:
                    os.system('clear')
                evaluate(hps, net_g, eval_loader, writer_eval)
                utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
                                      os.path.join(hps.model_dir, "G_{}.pdparams".format(global_step)), trainers)
                utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
                                      os.path.join(hps.model_dir, "D_{}.pdparams".format(global_step)), trainers)
                keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
                if keep_ckpts > 0:
                    utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)

        global_step += 1

    if rank == 0:
        global start_time
        now = time.time()
        durtaion = format(now - start_time, '.2f')
        logger.info(f'====> 回合:{epoch}, 消耗 {durtaion} 秒')
        start_time = now


def evaluate(hps, generator, eval_loader, writer_eval):
    generator.eval()
    image_dict = {}
    audio_dict = {}
    with paddle.no_grad():
        for batch_idx, items in enumerate(eval_loader):
            c, f0, spec, y, spk, _, uv = items
            g = spk[:1]
            spec, y = spec[:1], y[:1]
            c = c[:1]
            f0 = f0[:1]
            uv= uv[:1]
            mel = spec_to_mel_torch(
                spec,
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.mel_fmin,
                hps.data.mel_fmax)
            y_hat = generator.infer(c, f0, uv, g=g)
            y_hat_mel = mel_spectrogram_torch(
                y_hat.squeeze(1).cast('float32'),
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )

            audio_dict.update({
                f"生成器测试数据/音频_{batch_idx}": y_hat[0],
                f"地标真实数据/音频_{batch_idx}": y[0]
            })
        image_dict.update({
            "生成器测试数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].numpy()),
            "地标真实数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].numpy())
        })
    utils.summarize(
        writer=writer_eval,
        global_step=global_step,
        images=image_dict,
        audios=audio_dict,
        audio_sampling_rate=hps.data.sampling_rate
    )
    generator.train()


if __name__ == "__main__":
    main()