Spaces:
Sleeping
Sleeping
File size: 10,071 Bytes
4585e41 b3cb31e c5f4ba2 4585e41 c5f4ba2 0ad5e8b c2edf17 b3cb31e c5f4ba2 c2edf17 c5f4ba2 4585e41 c5f4ba2 4585e41 fcb101a 4585e41 5075527 b3cb31e c5f4ba2 5075527 4585e41 bd5ce41 c5f4ba2 4585e41 33c00bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import io
import os
import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging
import os
import paddle
import requests
import utils
from spleeter import Separator
import time
from datetime import datetime, timedelta
build_dir=os.getcwd()
if build_dir == "/home/aistudio":
build_dir += "/build"
model_dir=build_dir+'/trained_models'
model_list_path = model_dir + "/model_list.txt"
# 筛选出文件夹
models = []
for filename in os.listdir(model_dir):
# 判断文件名是否以 '.pdparams' 结尾,并且不包含后缀部分
if filename.endswith('.pdparams') and os.path.splitext(filename)[0].isalpha():
models.append(os.path.splitext(filename)[0])
cache_model = {}
def callback(text):
if text == "reboot":
os._exit(0)
one_hour_later = datetime.now() + timedelta(hours=1)
else:
global start_time
if time.time() - start_time >= 3600:
os._exit(0)
one_hour_later = datetime.now() + timedelta(hours=1)
else:
return text
def separate_fn(song_input):
try:
if song_input is None:
return "请上传歌曲",None,None,None,None
params_2stems = {
'sample_rate': 44100,
'frame_length': 4096,
'frame_step': 1024,
'T': 512,
'F': 1024,
'num_instruments': ['vocals', 'instrumental'],
'output_dir': build_dir+'/output_2stems',
'checkpoint_path': build_dir+'/spleeter',
'use_elu': False}
sampling_rate, song = song_input
soundfile.write("temp.wav", song, sampling_rate, format="wav")
# 初始化分离器
sep = Separator(params_2stems)
sep.separate('temp.wav')
vocal_path = params_2stems["output_dir"]+"/temp-vocals.wav"
instrumental_path = params_2stems["output_dir"]+"/temp-instrumental.wav"
return "分离成功,请继续前往体验【转换】和【混音】",vocal_path,instrumental_path,vocal_path,instrumental_path
except Exception as e:
import traceback
return traceback.format_exc() , None,None,None,None
def convert_fn(model_name, input_audio,input_audio_micro, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
try:
if model_name in cache_model:
model = cache_model[model_name]
else:
if paddle.device.is_compiled_with_cuda()==False and len(cache_model)!=0:
return f"目前运行环境为CPU,受制于平台算力,每次启动本项目只允许加载1个模型,当前已加载{next(iter(cache_model))}",None,None
config_path = f"{build_dir}/trained_models/config.json"
model = Svc(f"{build_dir}/trained_models/{model_name}.pdparams", config_path,mode="test")
cache_model[model_name] = model
if input_audio is None and input_audio_micro is None:
return "请上传音频", None,None
if input_audio_micro is not None:
input_audio = input_audio_micro
sampling_rate, audio = input_audio
duration = audio.shape[0] / sampling_rate
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
print(audio.shape)
out_wav_path = "temp.wav"
soundfile.write(out_wav_path, audio, 16000, format="wav")
print(cluster_ratio, auto_f0, noise_scale)
_audio = model.slice_inference(out_wav_path, model_name, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
del model
return "转换成功,请继续前往体验【混音】", (44100, _audio),(44100, _audio)
except Exception as e:
import traceback
return traceback.format_exc() , None,None
def compose_fn(input_vocal,input_instrumental,mixing_ratio=0.5):
try:
outlog = "混音成功"
if input_vocal is None:
return "请上传人声", None
if input_instrumental is None:
return "请上传伴奏", None
vocal_sampling_rate, vocal = input_vocal
vocal_duration = vocal.shape[0] / vocal_sampling_rate
vocal = (vocal / np.iinfo(vocal.dtype).max).astype(np.float32)
if len(vocal.shape) > 1:
vocal = librosa.to_mono(vocal.transpose(1, 0))
if vocal_sampling_rate != 44100:
vocal = librosa.resample(vocal, orig_sr=vocal_sampling_rate, target_sr=44100)
instrumental_sampling_rate, instrumental = input_instrumental
instrumental_duration = instrumental.shape[0] / instrumental_sampling_rate
instrumental = (instrumental / np.iinfo(instrumental.dtype).max).astype(np.float32)
if len(instrumental.shape) > 1:
instrumental = librosa.to_mono(instrumental.transpose(1, 0))
if instrumental_sampling_rate != 44100:
instrumental = librosa.resample(instrumental, orig_sr=instrumental_sampling_rate, target_sr=44100)
if len(vocal)!=len(instrumental):
min_length = min(len(vocal),len(instrumental))
instrumental = instrumental[:min_length]
vocal = vocal[:min_length]
outlog = "人声伴奏长度不一致,已自动截断较长的音频"
mixed_audio = (1 - mixing_ratio) * vocal + mixing_ratio * instrumental
mixed_audio_data = mixed_audio.astype(np.float32)
return outlog,(44100,mixed_audio_data)
except Exception as e:
import traceback
return traceback.format_exc() , None
app = gr.Blocks()
with app:
start_time = time.time()
one_hour_later = datetime.now() + timedelta(hours=1)
gr.Markdown('<h1 style="text-align: center;">SVC歌声转换全流程体验(伴奏分离,转换,混音)</h1>')
with gr.Tabs() as tabs:
with gr.TabItem("人声伴奏分离"):
gr.Markdown('<p>该项目人声分离的效果弱于UVR5,如自备分离好的伴奏和人声可跳过该步骤</p>')
song_input = gr.Audio(label="上传歌曲(tips:上传后点击右上角✏可以进行歌曲剪辑)",interactive=True)
gr.Examples(examples=[build_dir+"/examples/song/blue.wav",build_dir+"/examples/song/Counter_clockwise_Clock.wav",build_dir+"/examples/song/one_last_kiss.wav"],inputs=song_input,label="歌曲样例")
btn_separate = gr.Button("人声伴奏分离", variant="primary")
text_output1 = gr.Textbox(label="输出信息")
vocal_output1 = gr.Audio(label="输出人声",interactive=False)
instrumental_output1 = gr.Audio(label="输出伴奏",interactive=False)
with gr.TabItem("转换"):
model_name = gr.Dropdown(label="模型", choices=models, value="纳西妲")
vocal_input1 = gr.Audio(label="上传人声",interactive=True)
gr.Examples(examples=[build_dir+"/examples/vocals/blue_vocal.wav",build_dir+"/examples/vocals/Counter_clockwise_Clock_vocal.wav",build_dir+"/examples/vocals/one_last_kiss_vocal.wav"],inputs=vocal_input1,label="人声样例")
btn_use_separate = gr.Button("使用【人声伴奏分离】分离的人声")
micro_input = gr.Audio(label="麦克风输入(优先于上传的人声)",source="microphone",interactive=True)
vc_transform = gr.Number(label="变调(半音数量,升八度12降八度-12)", value=0)
cluster_ratio = gr.Number(label="聚类模型混合比例", value=0,visible=False)
auto_f0 = gr.Checkbox(label="自动预测音高(转换歌声时不要打开,会严重跑调)", value=False)
slice_db = gr.Number(label="静音分贝阈值(嘈杂的音频可以-30,干声保留呼吸可以-50)", value=-50)
noise_scale = gr.Number(label="noise_scale", value=0.2)
btn_convert = gr.Button("转换", variant="primary")
text_output2 = gr.Textbox(label="输出信息")
vc_output2 = gr.Audio(label="输出音频",interactive=False)
with gr.TabItem("混音"):
vocal_input2 = gr.Audio(label="上传人声",interactive=True)
btn_use_convert = gr.Button("使用【转换】输出的人声")
instrumental_input1 = gr.Audio(label="上传伴奏")
gr.Examples(examples=[build_dir+"/examples/instrumental/blue_instrumental.wav",build_dir+"/examples/instrumental/Counter_clockwise_Clock_instrumental.wav",build_dir+"/examples/instrumental/one_last_kiss_instrumental.wav"],inputs=instrumental_input1,label="伴奏样例")
btn_use_separate2 = gr.Button("使用【人声伴奏分离】分离的伴奏")
mixing_ratio = gr.Slider(0, 1, value=0.75,step=0.01,label="混音比例(人声:伴奏)", info="人声:伴奏")
btn_compose = gr.Button("混音", variant="primary")
text_output3 = gr.Textbox(label="输出信息")
song_output = gr.Audio(label="输出歌曲",interactive=False)
with gr.TabItem("设置"):
output = gr.Textbox(label="输出",placeholder=f"距离下一次允许重启时间为{one_hour_later}")
btn_reboot = gr.Button("重启",variant="primary")
btn_separate.click(separate_fn, song_input, [text_output1, vocal_output1,instrumental_output1,vocal_input1,instrumental_input1])
btn_convert.click(convert_fn, [model_name, vocal_input1,micro_input,vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [text_output2, vc_output2,vocal_input2])
btn_compose.click(compose_fn,[vocal_input2,instrumental_input1,mixing_ratio],[text_output3,song_output])
btn_reboot.click(callback,output)
btn_use_convert.click(lambda x:x,vc_output2,vocal_input2)
btn_use_separate.click(lambda x:x,vocal_output1,vocal_input1)
btn_use_separate2.click(lambda x:x,instrumental_output1,instrumental_input1)
app.launch() |