Spaces:
Sleeping
Sleeping
File size: 13,690 Bytes
4585e41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import logging
import multiprocessing
import time
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import paddle
#paddle.device.set_device("cpu") #开启可用CPU进行炼丹
trainer:str = "admin"
from paddle.nn import functional as F
from paddle.io import DataLoader
from visualdl import LogWriter
from paddle.amp import auto_cast, GradScaler
import modules.commons as commons
import utils
from data_utils import TextAudioSpeakerLoader, TextAudioCollate
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from modules.losses import (
kl_loss,
generator_loss, discriminator_loss, feature_loss
)
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
paddle.set_flags({'FLAGS_cudnn_exhaustive_search': True}) # 使用穷举搜索方法来选择卷积算法
global_step = 0
trainers:list[str] = []
start_time = time.time()
def main():
"""Assume Single Node Multi GPUs Training Only"""
#assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = paddle.device.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
run(n_gpus, hps, )
def run(n_gpus, hps):
global global_step,trainers,trainer
trainer = hps.trainer
rank = 0
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = LogWriter(logdir=hps.model_dir)
writer_eval = LogWriter(logdir=os.path.join(hps.model_dir, "eval"))
paddle.seed(hps.train.seed)
paddle.device.set_device('cpu' if paddle.device.get_device() == 'cpu' else 'gpu:' + str(rank))
collate_fn = TextAudioCollate()
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
train_loader = DataLoader(dataset = train_dataset,
num_workers=num_workers,
shuffle=False,
batch_size=hps.train.batch_size,
collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
eval_loader = DataLoader(dataset = eval_dataset,
num_workers = 1,
shuffle = False,
batch_size = 1,
drop_last = False,
collate_fn = collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
optim_g = paddle.optimizer.AdamW(
parameters = net_g.parameters(),
learning_rate = hps.train.learning_rate,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
optim_d = paddle.optimizer.AdamW(
parameters = net_d.parameters(),
learning_rate = hps.train.learning_rate,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
skip_optimizer = False
try:
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pdparams"), net_g,
optim_g, skip_optimizer)
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pdparams"), net_d,
optim_d, skip_optimizer)
if trainer not in trainers:
trainers.append(trainer)
epoch_str = max(epoch_str, 1)
global_step = (epoch_str - 1) * len(train_loader)
except Exception as e:
print(e)
logger.info("加载旧检查点失败……")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
scheduler_g = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)
scheduler_d = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)
optim_g = paddle.optimizer.AdamW(
parameters = net_g.parameters(),
learning_rate = scheduler_g,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
optim_d = paddle.optimizer.AdamW(
parameters = net_d.parameters(),
learning_rate = scheduler_d,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
scaler = GradScaler(enable = hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler:GradScaler, loaders, logger:logging.Logger, writers:list or None):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, items in enumerate(train_loader):
c, f0, spec, y, spk, lengths, uv = items
g = spk
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
with auto_cast(enable=hps.train.fp16_run):
y_hat, ids_slice, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
spec_lengths=lengths)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with auto_cast(enable=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.clear_grad()
scaler.scale(loss_disc_all).backward(retain_graph = True) # 将 Tensor 乘上缩放因子,返回缩放后的输出,返回loss然后反向传播
scaler.unscale_(optim_d) # 将参数的梯度除去缩放比例。
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with auto_cast(enable=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with auto_cast(enable=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lf0 = F.mse_loss(pred_lf0, lf0)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
optim_g.clear_grad()
scaler.scale(loss_gen_all).backward(retain_graph = True)
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
#lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
#losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
#logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") # 梅花自己看的~
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
logger.info('训练回合:{} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}")
scalar_dict = {"损失/生成器/总损失": loss_gen_all, "损失/判别器/总损失": loss_disc_all, "学习率": lr,
"归一化判别器梯度": grad_norm_d, "归一化生成器梯度": grad_norm_g}
scalar_dict.update({"损失/生成器/特征匹配损失": loss_fm, "损失/生成器/梅尔频谱损失": loss_mel, "损失/生成器/KL散度": loss_kl,
"损失/生成器/基音损失": loss_lf0})
image_dict = {
"切片/原始梅尔频谱图": utils.plot_spectrogram_to_numpy(y_mel[0].detach().numpy()),
"切片/生成梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].detach().numpy()),
"全部/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].detach().numpy()),
"全部/基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
pred_lf0[0, 0, :].detach().numpy()),
"全部/归一化基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
norm_lf0[0, 0, :].detach().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
if global_step % hps.train.eval_interval == 0:
if hps.clean_logs:
os.system('clear')
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pdparams".format(global_step)), trainers)
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pdparams".format(global_step)), trainers)
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
if keep_ckpts > 0:
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
global_step += 1
if rank == 0:
global start_time
now = time.time()
durtaion = format(now - start_time, '.2f')
logger.info(f'====> 回合:{epoch}, 消耗 {durtaion} 秒')
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with paddle.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk, _, uv = items
g = spk[:1]
spec, y = spec[:1], y[:1]
c = c[:1]
f0 = f0[:1]
uv= uv[:1]
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat = generator.infer(c, f0, uv, g=g)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).cast('float32'),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({
f"生成器测试数据/音频_{batch_idx}": y_hat[0],
f"地标真实数据/音频_{batch_idx}": y[0]
})
image_dict.update({
"生成器测试数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].numpy()),
"地标真实数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()
|