SVC-Nahida / preprocess_hubert_f0.py
Yunshansongbai's picture
Upload 75 files
4585e41
import math
import multiprocessing
import os
import argparse
from random import shuffle
import paddle
from glob import glob
from tqdm import tqdm
import utils
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import librosa
import numpy as np
hps = utils.get_hparams_from_file("configs/config.json")
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
def process_one(filename, hmodel):
# print(filename)
wav, sr = librosa.load(filename, sr=sampling_rate)
soft_path = filename + ".soft.pdtensor"
if not os.path.exists(soft_path):
devive = "cuda" if paddle.device.is_compiled_with_cuda() else "cpu"
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
wav16k = paddle.to_tensor(wav16k).cpu() if devive=='cpu' else paddle.to_tensor(wav16k).cuda()
c:paddle.Tensor = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
paddle.save(c.cpu(), soft_path)
f0_path = filename + ".f0.npy"
if not os.path.exists(f0_path):
f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
np.save(f0_path, f0)
def process_batch(filenames):
print("正在加载内容的HuBERT……")
device = "cuda" if paddle.device.is_compiled_with_cuda() else "cpu"
hmodel = utils.get_hubert_model()
print("HuBERT已被装载。")
for filename in tqdm(filenames):
process_one(filename, hmodel)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
args = parser.parse_args()
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
shuffle(filenames)
multiprocessing.set_start_method('spawn',force=True)
num_processes = 1
chunk_size = int(math.ceil(len(filenames) / num_processes))
chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
print([len(c) for c in chunks])
processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
for p in processes:
p.start()