Views / app.py
ZENLLC's picture
Update app.py
75b4a12 verified
import cv2
import numpy as np
from PIL import Image, ImageDraw
import gradio as gr
def classify_pipe_material(image_np):
"""
Classify overall material based on image brightness.
Brighter images (mean intensity > 130) are assumed to be Plastic; otherwise, Metal.
"""
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
mean_intensity = np.mean(gray)
return "Plastic" if mean_intensity > 130 else "Metal"
def detect_rust(roi):
"""
Detect rust by checking for reddish-brown hues in the ROI.
"""
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
lower_rust = np.array([5, 50, 50])
upper_rust = np.array([25, 255, 255])
mask = cv2.inRange(hsv_roi, lower_rust, upper_rust)
rust_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
return rust_ratio
def detect_mold(roi):
"""
Detect mold by looking for greenish hues, which may indicate fungal growth.
"""
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
lower_mold = np.array([35, 50, 20])
upper_mold = np.array([85, 255, 120])
mask = cv2.inRange(hsv_roi, lower_mold, upper_mold)
mold_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
return mold_ratio
def detect_water_damage(roi):
"""
Detect water damage by checking for discoloration typical of stains (dark brownish-yellow).
"""
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
lower_water = np.array([5, 50, 50])
upper_water = np.array([20, 200, 150])
mask = cv2.inRange(hsv_roi, lower_water, upper_water)
water_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
return water_ratio
def classify_defect(roi):
"""
Classify the defect using a combination of color and texture heuristics.
Priority is given to color cues:
- "Rust": reddish-brown
- "Mold": greenish
- "Water Damage": discoloration from water stains
Then geometric/texture analysis is used to differentiate "Crack" and "Corrosion."
"""
area = roi.shape[0] * roi.shape[1]
std_intensity = np.std(roi)
rust_ratio = detect_rust(roi)
mold_ratio = detect_mold(roi)
water_ratio = detect_water_damage(roi)
# Check for color-based defects first.
if rust_ratio > 0.25:
return "Rust"
elif mold_ratio > 0.2:
return "Mold"
elif water_ratio > 0.2:
return "Water Damage"
# Then use size and intensity variation for structural defects.
if area < 5000 and std_intensity > 50:
return "Crack"
elif area >= 5000 and std_intensity > 40:
return "Corrosion"
else:
return "Other Defect"
def detect_infrastructure_issues(image: Image.Image):
try:
# Convert the PIL image to a NumPy array (RGB)
image_np = np.array(image)
annotated = image.copy() # For drawing annotations
draw = ImageDraw.Draw(annotated)
# Classify the overall pipe (or structure) material
overall_material = classify_pipe_material(image_np)
# Enhance image for defect detection:
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
# Adaptive thresholding highlights potential defect areas
thresh = cv2.adaptiveThreshold(
blurred, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
11, 2
)
# Morphological closing to consolidate defect regions
kernel = np.ones((3, 3), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Edge detection to identify defect boundaries
edges = cv2.Canny(morph, 50, 150)
# Extract contours as candidate defect regions
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
detections = []
# Define distinct colors for each defect type
colors = {
"Rust": "orange",
"Mold": "purple",
"Water Damage": "blue",
"Crack": "red",
"Corrosion": "cyan",
"Other Defect": "gray"
}
for cnt in contours:
if cv2.contourArea(cnt) < 100: # Filter out noise
continue
x, y, w, h = cv2.boundingRect(cnt)
roi = image_np[y:y+h, x:x+w]
if roi.size == 0:
continue
defect_type = classify_defect(roi)
detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})"
detections.append(detection_info)
# Draw bounding box with defect-specific color
box_color = colors.get(defect_type, "gray")
draw.rectangle([x, y, x+w, y+h], outline=box_color, width=2)
draw.text((x, y-10), defect_type, fill=box_color)
# Create a textual summary
if detections:
summary = f"Overall Material: {overall_material}\nDetected Issues:\n" + "\n".join(detections)
else:
summary = f"Overall Material: {overall_material}\nNo significant defects detected."
return annotated, summary
except Exception as e:
print("Error during detection:", e)
return image, f"Error: {e}"
iface = gr.Interface(
fn=detect_infrastructure_issues,
inputs=gr.Image(type="pil", label="Upload an Infrastructure Image"),
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
title="Comprehensive Home Infrastructure Defect Detector",
description=(
"Upload an image of a pipe or any home infrastructure (walls, floors, etc.) to detect defects. "
"This tool identifies issues such as Rust (orange), Mold (purple), Water Damage (blue), Cracks (red), "
"and Corrosion (cyan), and returns both an annotated image and a detailed summary."
)
)
if __name__ == "__main__":
iface.launch()