Spaces:
Runtime error
Runtime error
## LLMs in Swarms Documentation | |
Welcome to the documentation for the llm section of the swarms package, designed to facilitate seamless integration with various AI language models and APIs. This package empowers developers, end-users, and system administrators to interact with AI models from different providers, such as OpenAI, Hugging Face, Google PaLM, and Anthropic. | |
### Table of Contents | |
1. [OpenAI](#openai) | |
2. [HuggingFace](#huggingface) | |
3. [Google PaLM](#google-palm) | |
4. [Anthropic](#anthropic) | |
### 1. OpenAI (swarms.agents.models.OpenAI) | |
The OpenAI class provides an interface to interact with OpenAI's language models. It allows both synchronous and asynchronous interactions. | |
**Constructor:** | |
```python | |
OpenAI(api_key: str, system: str = None, console: bool = True, model: str = None, params: dict = None, save_messages: bool = True) | |
``` | |
**Attributes:** | |
- `api_key` (str): Your OpenAI API key. | |
- `system` (str, optional): A system message to be used in conversations. | |
- `console` (bool, default=True): Display console logs. | |
- `model` (str, optional): Name of the language model to use. | |
- `params` (dict, optional): Additional parameters for model interactions. | |
- `save_messages` (bool, default=True): Save conversation messages. | |
**Methods:** | |
- `generate(message: str, **kwargs) -> str`: Generate a response using the OpenAI model. | |
- `generate_async(message: str, **kwargs) -> str`: Generate a response asynchronously. | |
- `ask_multiple(ids: List[str], question_template: str) -> List[str]`: Query multiple IDs simultaneously. | |
- `stream_multiple(ids: List[str], question_template: str) -> List[str]`: Stream multiple responses. | |
**Usage Example:** | |
```python | |
from swarms import OpenAI | |
import asyncio | |
chat = OpenAI(api_key="YOUR_OPENAI_API_KEY") | |
response = chat.generate("Hello, how can I assist you?") | |
print(response) | |
ids = ["id1", "id2", "id3"] | |
async_responses = asyncio.run(chat.ask_multiple(ids, "How is {id}?")) | |
print(async_responses) | |
``` | |
### 2. HuggingFace (swarms.agents.models.HuggingFaceLLM) | |
The HuggingFaceLLM class allows interaction with language models from Hugging Face. | |
**Constructor:** | |
```python | |
HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None) | |
``` | |
**Attributes:** | |
- `model_id` (str): ID or name of the Hugging Face model. | |
- `device` (str, optional): Device to run the model on (e.g., 'cuda', 'cpu'). | |
- `max_length` (int, default=20): Maximum length of generated text. | |
- `quantize` (bool, default=False): Apply model quantization. | |
- `quantization_config` (dict, optional): Configuration for quantization. | |
**Methods:** | |
- `generate(prompt_text: str, max_length: int = None) -> str`: Generate text based on a prompt. | |
**Usage Example:** | |
```python | |
from swarms import HuggingFaceLLM | |
model_id = "gpt2" | |
hugging_face_model = HuggingFaceLLM(model_id=model_id) | |
prompt = "Once upon a time" | |
generated_text = hugging_face_model.generate(prompt) | |
print(generated_text) | |
``` | |
### 3. Google PaLM (swarms.agents.models.GooglePalm) | |
The GooglePalm class provides an interface for Google's PaLM Chat API. | |
**Constructor:** | |
```python | |
GooglePalm(model_name: str = "models/chat-bison-001", google_api_key: str = None, temperature: float = None, top_p: float = None, top_k: int = None, n: int = 1) | |
``` | |
**Attributes:** | |
- `model_name` (str): Name of the Google PaLM model. | |
- `google_api_key` (str, optional): Google API key. | |
- `temperature` (float, optional): Temperature for text generation. | |
- `top_p` (float, optional): Top-p sampling value. | |
- `top_k` (int, optional): Top-k sampling value. | |
- `n` (int, default=1): Number of candidate completions. | |
**Methods:** | |
- `generate(messages: List[Dict[str, Any]], stop: List[str] = None, **kwargs) -> Dict[str, Any]`: Generate text based on a list of messages. | |
- `__call__(messages: List[Dict[str, Any]], stop: List[str] = None, **kwargs) -> Dict[str, Any]`: Generate text using the call syntax. | |
**Usage Example:** | |
```python | |
from swarms import GooglePalm | |
google_palm = GooglePalm() | |
messages = [{"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "Tell me a joke"}] | |
response = google_palm.generate(messages) | |
print(response["choices"][0]["text"]) | |
``` | |
### 4. Anthropic (swarms.agents.models.Anthropic) | |
The Anthropic class enables interaction with Anthropic's large language models. | |
**Constructor:** | |
```python | |
Anthropic(model: str = "claude-2", max_tokens_to_sample: int = 256, temperature: float = None, top_k: int = None, top_p: float = None, streaming: bool = False, default_request_timeout: int = None) | |
``` | |
**Attributes:** | |
- `model` (str): Name of the Anthropic model. | |
- `max_tokens_to_sample` (int, default=256): Maximum tokens to sample. | |
- `temperature` (float, optional): Temperature for text generation. | |
- `top_k` (int, optional): Top-k sampling value. | |
- `top_p` (float, optional): Top-p sampling value. | |
- `streaming` (bool, default=False): Enable streaming mode. | |
- `default_request_timeout` (int, optional): Default request timeout. | |
**Methods:** | |
- `generate(prompt: str, stop: List[str] = None) -> str`: Generate text based on a prompt. | |
**Usage Example:** | |
```python | |
from swarms import Anthropic | |
anthropic = Anthropic() | |
prompt = "Once upon a time" | |
generated_text = anthropic.generate(prompt) | |
print(generated_text) | |
``` | |
This concludes the documentation for the "models" folder, providing you with tools to seamlessly integrate with various language models and APIs. Happy coding! |