Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import T5Tokenizer, AutoModelForSeq2SeqLM | |
# Load the Hugging Face model with SentencePiece tokenizer | |
def load_model(): | |
tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
return tokenizer, model | |
# Load the model and tokenizer | |
tokenizer, model = load_model() | |
# Streamlit app interface | |
st.title("Paraphrasing Tool - AI to Human") | |
st.write("Paste your AI-generated text below, and the tool will humanize it:") | |
# Input text box | |
input_text = st.text_area("Enter text here (no word limit):") | |
if st.button("Paraphrase"): | |
if input_text.strip(): | |
with st.spinner("Paraphrasing... Please wait."): | |
try: | |
# Prepare input for the model | |
inputs = tokenizer.encode("paraphrase: " + input_text, | |
return_tensors="pt") | |
# Generate paraphrased output | |
outputs = model.generate( | |
inputs, | |
num_beams=5, | |
temperature=0.7, | |
early_stopping=True | |
) | |
paraphrased_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.success("Here is the paraphrased text:") | |
st.write(paraphrased_text) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.error("Please enter some text to paraphrase.") | |