File size: 9,577 Bytes
077a09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
COMPLEX_SAMPLE_JSON = """
{
"central_node": "Artificial Intelligence (AI)",
"nodes": [
{
"id": "ml",
"label": "Machine Learning (ML)",
"relationship": "Core Domain",
"subnodes": [
{
"id": "sl",
"label": "Supervised Learning",
"relationship": "Learning Paradigm",
"subnodes": [
{
"id": "sl_prob",
"label": "Probabilistic Models",
"relationship": "Approach Type",
"subnodes": [
{
"id": "nbc",
"label": "Naive Bayes Classifier",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "text_class", "label": "Text Classification", "relationship": "Application"},
{"id": "spam_det", "label": "Spam Detection", "relationship": "Application"}
]
},
{
"id": "lda",
"label": "Linear Discriminant Analysis",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "dim_red_lda", "label": "Dimensionality Reduction", "relationship": "Use Case"},
{"id": "face_recog", "label": "Face Recognition", "relationship": "Use Case"}
]
}
]
},
{
"id": "sl_det",
"label": "Deterministic Models",
"relationship": "Approach Type",
"subnodes": [
{
"id": "svm",
"label": "Support Vector Machines (SVM)",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "image_recog", "label": "Image Recognition", "relationship": "Application"},
{"id": "bioinfo", "label": "Bioinformatics", "relationship": "Application"}
]
},
{
"id": "dt",
"label": "Decision Trees",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "credit_scoring", "label": "Credit Scoring", "relationship": "Application"},
{"id": "medical_diag", "label": "Medical Diagnosis", "relationship": "Application"}
]
}
]
}
]
},
{
"id": "ul",
"label": "Unsupervised Learning",
"relationship": "Learning Paradigm",
"subnodes": [
{
"id": "clus",
"label": "Clustering",
"relationship": "Task Type",
"subnodes": [
{
"id": "kmeans",
"label": "K-Means Clustering",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "customer_seg", "label": "Customer Segmentation", "relationship": "Application"},
{"id": "document_analysis", "label": "Document Analysis", "relationship": "Application"}
]
},
{
"id": "dbscan",
"label": "DBSCAN",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "anomaly_det", "label": "Anomaly Detection", "relationship": "Application"},
{"id": "spatial_data", "label": "Spatial Data Analysis", "relationship": "Application"}
]
}
]
},
{
"id": "dim_red_ul",
"label": "Dimensionality Reduction",
"relationship": "Task Type",
"subnodes": [
{
"id": "pca",
"label": "Principal Component Analysis (PCA)",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "feature_ext", "label": "Feature Extraction", "relationship": "Use Case"},
{"id": "noise_red", "label": "Noise Reduction", "relationship": "Use Case"}
]
},
{
"id": "tsne",
"label": "t-SNE",
"relationship": "Algorithm Example",
"subnodes": [
{"id": "data_viz", "label": "Data Visualization", "relationship": "Application"},
{"id": "genomics", "label": "Genomics", "relationship": "Application"}
]
}
]
}
]
}
]
},
{
"id": "dl",
"label": "Deep Learning (DL)",
"relationship": "Subfield of ML",
"subnodes": [
{
"id": "cnn",
"label": "Convolutional Neural Networks (CNNs)",
"relationship": "Architecture Type",
"subnodes": [
{
"id": "img_class",
"label": "Image Classification",
"relationship": "Primary Use",
"subnodes": [
{
"id": "alexnet",
"label": "AlexNet",
"relationship": "Historic Model",
"subnodes": [
{"id": "imagenet", "label": "ImageNet Challenge", "relationship": "Milestone"},
{"id": "gpu_accel", "label": "GPU Acceleration", "relationship": "Enabling Factor"}
]
},
{
"id": "resnet",
"label": "ResNet",
"relationship": "Advanced Model",
"subnodes": [
{"id": "residual_con", "label": "Residual Connections", "relationship": "Key Feature"},
{"id": "deeper_nets", "label": "Deeper Networks", "relationship": "Benefit"}
]
}
]
},
{
"id": "obj_det_cnn",
"label": "Object Detection",
"relationship": "Primary Use",
"subnodes": [
{
"id": "yolo",
"label": "YOLO (You Only Look Once)",
"relationship": "Real-time Algorithm",
"subnodes": [
{"id": "speed", "label": "High Speed", "relationship": "Advantage"},
{"id": "single_pass", "label": "Single Pass Detection", "relationship": "Mechanism"}
]
},
{
"id": "faster_rcnn",
"label": "Faster R-CNN",
"relationship": "Region-based Algorithm",
"subnodes": [
{"id": "region_props", "label": "Region Proposals", "relationship": "Mechanism"},
{"id": "accuracy", "label": "High Accuracy", "relationship": "Advantage"}
]
}
]
}
]
},
{
"id": "rnn",
"label": "Recurrent Neural Networks (RNNs)",
"relationship": "Architecture Type",
"subnodes": [
{
"id": "seq_data",
"label": "Sequential Data Processing",
"relationship": "Primary Use",
"subnodes": [
{
"id": "nlp_rnn",
"label": "Natural Language Processing (NLP)",
"relationship": "Application Area",
"subnodes": [
{"id": "text_gen_rnn", "label": "Text Generation", "relationship": "Specific Task"},
{"id": "sentiment_rnn", "label": "Sentiment Analysis", "relationship": "Specific Task"}
]
},
{
"id": "speech_rec",
"label": "Speech Recognition",
"relationship": "Application Area",
"subnodes": [
{"id": "voice_assist", "label": "Voice Assistants", "relationship": "Product Example"},
{"id": "transcription", "label": "Audio Transcription", "relationship": "Task"}
]
}
]
},
{
"id": "advanced_rnn",
"label": "Advanced RNN Variants",
"relationship": "Improvements",
"subnodes": [
{
"id": "lstm",
"label": "Long Short-Term Memory (LSTM)",
"relationship": "Variant Type",
"subnodes": [
{"id": "vanishing_grad", "label": "Solves Vanishing Gradients", "relationship": "Benefit"},
{"id": "memory_cells", "label": "Internal Memory Cells", "relationship": "Mechanism"}
]
},
{
"id": "gru",
"label": "Gated Recurrent Unit (GRU)",
"relationship": "Variant Type",
"subnodes": [
{"id": "simpler_than_lstm", "label": "Simpler Architecture", "relationship": "Characteristic"},
{"id": "comparable_perf", "label": "Comparable Performance", "relationship": "Characteristic"}
]
}
]
}
]
}
]
}
]
}
""" |