GreenLensAI_LCA / app.py
ZainMalik0925's picture
Update app.py
723d673 verified
raw
history blame
8.55 kB
import streamlit as st
import pandas as pd
import plotly.express as px
# Set page configurations
st.set_page_config(page_title="GreenLens-AI", layout="wide")
# Page title and description
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>GreenLens-AI</h1>", unsafe_allow_html=True)
st.markdown(
"""
<p style='text-align: center; color: #4CAF50;'>
A Tool for Calculating Water, Energy, and Carbon Footprints of Textile Products 🌍
</p>
""",
unsafe_allow_html=True,
)
# Sidebar for file upload
st.sidebar.header("Step 1: Upload Dataset")
uploaded_file = st.sidebar.file_uploader("Upload your Excel file (.xlsx)", type=["xlsx"])
# Initialize data containers
fiber_impact_data = None
transport_impact_data = None
washing_impact_data = None
# Function to process the uploaded Excel file
@st.cache_data
def process_excel(file):
try:
excel_content = pd.ExcelFile(file)
fiber_data = pd.read_excel(file, sheet_name="Fiber Impact Data")
transport_data = pd.read_excel(file, sheet_name="Transport Impact Data")
washing_data = pd.read_excel(file, sheet_name="Washing Data")
# Convert into dictionaries for dynamic calculations
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
return fiber_impact_data, transport_impact_data, washing_impact_data
except Exception as e:
st.error(f"Error processing the file: {e}")
return None, None, None
# Process uploaded file
if uploaded_file:
fiber_impact_data, transport_impact_data, washing_impact_data = process_excel(uploaded_file)
# Function to calculate footprints
def calculate_footprints(weight, composition, lifecycle_inputs):
water_fp, energy_fp, carbon_fp = 0, 0, 0
for fiber, percentage in composition.items():
if fiber in fiber_impact_data:
data = fiber_impact_data[fiber]
fraction = percentage / 100
water_fp += data["Water (L/kg)"] * weight * fraction
energy_fp += data["Energy (MJ/kg)"] * weight * fraction
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction
if lifecycle_inputs["transport_mode"] in transport_impact_data:
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight
if lifecycle_inputs["washing_temperature"] in washing_impact_data:
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
water_fp += washing_water
energy_fp += washing_energy
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
# Convert water footprint from liters to kiloliters for visualization
water_fp_kL = water_fp / 1000 # Convert liters to kiloliters
return water_fp_kL, energy_fp, carbon_fp
# Sidebar inputs for all scenarios
def get_inputs(key_prefix):
product_weight = st.sidebar.number_input(f"{key_prefix} - Product Weight (kg)", min_value=0.01, step=0.01, value=0.5, key=f"{key_prefix}_weight")
st.sidebar.subheader(f"{key_prefix} - Material Composition (%)")
cotton = st.sidebar.number_input("Conventional Cotton (%)", min_value=0, max_value=100, value=50, step=1, key=f"{key_prefix}_cotton")
polyester = st.sidebar.number_input("Polyester (%)", min_value=0, max_value=100, value=30, step=1, key=f"{key_prefix}_polyester")
nylon = st.sidebar.number_input("Nylon 6 (%)", min_value=0, max_value=100, value=10, step=1, key=f"{key_prefix}_nylon")
acrylic = st.sidebar.number_input("Acrylic (%)", min_value=0, max_value=100, value=5, step=1, key=f"{key_prefix}_acrylic")
viscose = st.sidebar.number_input("Viscose (%)", min_value=0, max_value=100, value=5, step=1, key=f"{key_prefix}_viscose")
total_percentage = cotton + polyester + nylon + acrylic + viscose
if total_percentage != 100:
st.sidebar.error(f"Total composition for {key_prefix} must be 100%!")
composition = {
"Conventional Cotton": cotton,
"Polyester": polyester,
"Nylon 6": nylon,
"Acrylic": acrylic,
"Viscose": viscose,
}
st.sidebar.subheader(f"{key_prefix} - Lifecycle Inputs")
washing_cycles = st.sidebar.number_input(f"{key_prefix} - Washing Cycles", min_value=0, step=1, value=30, key=f"{key_prefix}_wash_cycles")
washing_temperature = st.sidebar.selectbox(f"{key_prefix} - Washing Temperature", list(washing_impact_data.keys()), key=f"{key_prefix}_wash_temp")
use_dryer = st.sidebar.checkbox(f"{key_prefix} - Use Tumble Dryer?", key=f"{key_prefix}_use_dryer")
transport_mode = st.sidebar.selectbox(f"{key_prefix} - Transport Mode", list(transport_impact_data.keys()), key=f"{key_prefix}_transport_mode")
transport_distance = st.sidebar.number_input(f"{key_prefix} - Transport Distance (km)", min_value=0, step=10, value=100, key=f"{key_prefix}_transport_distance")
lifecycle_inputs = {
"washing_temperature": washing_temperature,
"washing_cycles": washing_cycles,
"use_dryer": use_dryer,
"transport_mode": transport_mode,
"transport_distance": transport_distance,
}
return product_weight, composition, lifecycle_inputs
# Main interface
if uploaded_file and fiber_impact_data and transport_impact_data and washing_impact_data:
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
if comparison_mode:
# Input for two assessments
col1, col2 = st.columns(2)
with col1:
st.subheader("Assessment 1")
product_weight_1, composition_1, lifecycle_inputs_1 = get_inputs("Assessment 1")
with col2:
st.subheader("Assessment 2")
product_weight_2, composition_2, lifecycle_inputs_2 = get_inputs("Assessment 2")
# Calculations for both assessments
water_fp_1, energy_fp_1, carbon_fp_1 = calculate_footprints(product_weight_1, composition_1, lifecycle_inputs_1)
water_fp_2, energy_fp_2, carbon_fp_2 = calculate_footprints(product_weight_2, composition_2, lifecycle_inputs_2)
# Combined visualization with line chart
st.subheader("Comparison of Assessments")
assessment_data = pd.DataFrame({
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
"Assessment 1": [water_fp_1, energy_fp_1, carbon_fp_1],
"Assessment 2": [water_fp_2, energy_fp_2, carbon_fp_2],
})
fig = px.line(
assessment_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
x="Footprint Type",
y="Value",
color="Assessment",
markers=True,
title="Footprint Trends: Assessment 1 vs. Assessment 2"
)
st.plotly_chart(fig)
else:
# Input for single calculation
product_weight, composition, lifecycle_inputs = get_inputs("")
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, lifecycle_inputs)
# Display results
st.subheader("Results")
st.markdown(f"- **Water Footprint**: {water_fp:.2f} kL")
st.markdown(f"- **Energy Footprint**: {energy_fp:.2f} MJ")
st.markdown(f"- **Carbon Footprint**: {carbon_fp:.2f} kg CO2e")
# Visualization for single scenario
result_data = pd.DataFrame({
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
"Value": [water_fp, energy_fp, carbon_fp],
})
fig = px.line(result_data, x="Footprint Type", y="Value", markers=True, title="Footprint Trends")
st.plotly_chart(fig)
else:
st.info("Please upload a dataset to proceed.")