Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import os | |
from groq import Groq | |
# Add custom CSS for the app background and highlighted text | |
def add_background(): | |
background_url = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/BKG03.jpg" | |
css = f""" | |
<style> | |
.stApp {{ | |
background-image: url("{background_url}"); | |
background-size: cover; | |
background-position: center; | |
background-attachment: fixed; | |
}} | |
.highlight {{ | |
background-color: rgba(27, 27, 27, 0.7); /* 70% opaque black */ | |
padding: 10px; | |
border-radius: 5px; | |
margin-bottom: 15px; | |
color: white; | |
}} | |
</style> | |
""" | |
st.markdown(css, unsafe_allow_html=True) | |
# Set page configuration | |
st.set_page_config(page_title="GreenLens AI", layout="wide") | |
# Call the background function | |
add_background() | |
# App title and subtitle | |
st.markdown("<h1 style='text-align: center; color: white;'>GreenLens AI</h1>", unsafe_allow_html=True) | |
st.markdown( | |
""" | |
<p style='text-align: center; color: white; font-size: 18px;'> | |
A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍 | |
</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Dataset URL | |
DATASET_URL = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/DataSet01.xlsx" | |
# Load dataset from Hugging Face Spaces | |
def process_dataset(url): | |
try: | |
excel_content = pd.ExcelFile(url) | |
fiber_data = pd.read_excel(excel_content, sheet_name="Fiber Impact Data") | |
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data") | |
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data") | |
# Convert data to dictionaries for calculations | |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index") | |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict() | |
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index") | |
return fiber_impact_data, transport_impact_data, washing_impact_data | |
except Exception as e: | |
st.error(f"Error loading dataset: {e}") | |
return None, None, None | |
# Calculate footprints | |
def calculate_footprints(weight, composition, lifecycle_inputs): | |
water_fp, energy_fp, carbon_fp = 0, 0, 0 | |
for fiber, percentage in composition.items(): | |
if fiber in fiber_impact_data: | |
data = fiber_impact_data[fiber] | |
fraction = percentage / 100 | |
water_fp += data["Water (L/kg)"] * weight * fraction | |
energy_fp += data["Energy (MJ/kg)"] * weight * fraction | |
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction | |
# Add transport impact | |
if lifecycle_inputs["transport_mode"] in transport_impact_data: | |
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight | |
# Add washing impact | |
if lifecycle_inputs["washing_temperature"] in washing_impact_data: | |
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]] | |
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"] | |
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"] | |
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"] | |
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0 | |
water_fp += washing_water | |
energy_fp += washing_energy | |
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"]) | |
# Convert water from liters to kiloliters | |
water_fp /= 1000 | |
return water_fp, energy_fp, carbon_fp | |
# Sidebar inputs | |
def get_inputs(prefix): | |
weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight") | |
st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Material Composition (%)</h3>", unsafe_allow_html=True) | |
cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 0, step=1, key=f"{prefix}_cotton") | |
polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 0, step=1, key=f"{prefix}_polyester") | |
nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 0, step=1, key=f"{prefix}_nylon") | |
acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 0, step=1, key=f"{prefix}_acrylic") | |
viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 0, step=1, key=f"{prefix}_viscose") | |
if cotton + polyester + nylon + acrylic + viscose != 100: | |
st.sidebar.error("Fiber composition must sum to 100%!") | |
st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Transport Inputs</h3>", unsafe_allow_html=True) | |
transport_mode = st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode") | |
transport_distance = st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=0, step=10, key=f"{prefix}_transport_distance") | |
lifecycle_inputs = { | |
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=0, key=f"{prefix}_wash_cycles"), | |
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"), | |
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"), | |
"transport_mode": transport_mode, | |
"transport_distance": transport_distance, | |
} | |
composition = { | |
"Conventional Cotton": cotton, | |
"Polyester": polyester, | |
"Nylon 6": nylon, | |
"Acrylic": acrylic, | |
"Viscose": viscose, | |
} | |
return weight, composition, lifecycle_inputs | |
# Adjust graph styling | |
def style_figure(fig): | |
fig.update_layout( | |
plot_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency | |
paper_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency | |
font=dict(color="white"), # Font color set to white | |
title_font=dict(size=18, color="white"), # Title font white | |
xaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")), | |
yaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")), | |
) | |
fig.update_traces(marker=dict(color="white", line=dict(color="gray", width=1))) # Simulate 3D effect with border | |
return fig | |
# Generate recommendations using Groq API | |
def generate_recommendations(water, energy, carbon): | |
try: | |
client = Groq(api_key="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") | |
prompt = ( | |
f"The environmental impact values for a textile product are as follows:\n" | |
f"Water Footprint: {water:.2f} kL\n" | |
f"Energy Footprint: {energy:.2f} MJ\n" | |
f"Carbon Footprint: {carbon:.2f} kg CO2e\n" | |
f"Provide recommendations to lower these impacts." | |
) | |
response = client.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error generating recommendations: {e}" | |
# Main application logic | |
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL) | |
if fiber_impact_data and transport_impact_data and washing_impact_data: | |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode") | |
if comparison_mode: | |
# Input for two assessments | |
col1, col2 = st.columns(2) | |
with col1: | |
weight1, composition1, lifecycle1 = get_inputs("Assessment 1") | |
with col2: | |
weight2, composition2, lifecycle2 = get_inputs("Assessment 2") | |
# Calculate footprints for both assessments | |
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1) | |
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2) | |
# Display numerical comparison | |
st.markdown(f""" | |
<div class="highlight"> | |
<h2>Numerical Comparison</h2> | |
<p>Assessment 1: Water: {water1:.2f} kL, Energy: {energy1:.2f} MJ, Carbon: {carbon1:.2f} kg CO2e</p> | |
<p>Assessment 2: Water: {water2:.2f} kL, Energy: {energy2:.2f} MJ, Carbon: {carbon2:.2f} kg CO2e</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Bar chart comparison | |
comparison_data = pd.DataFrame({ | |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"], | |
"Assessment 1": [water1, energy1, carbon1], | |
"Assessment 2": [water2, energy2, carbon2], | |
}) | |
fig = px.bar( | |
comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"), | |
x="Footprint Type", | |
y="Value", | |
color="Assessment", | |
title="Comparison of Assessments" | |
) | |
st.plotly_chart(style_figure(fig)) | |
else: | |
# Input for a single assessment | |
weight, composition, lifecycle = get_inputs("Single") | |
water, energy, carbon = calculate_footprints(weight, composition, lifecycle) | |
# Display results | |
st.markdown(f""" | |
<div class="highlight"> | |
<h2>Single Assessment Results</h2> | |
<p>Water Footprint: {water:.2f} kL</p> | |
<p>Energy Footprint: {energy:.2f} MJ</p> | |
<p>Carbon Footprint: {carbon:.2f} kg CO2e</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Bar chart for single assessment | |
result_data = pd.DataFrame({ | |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"], | |
"Value": [water, energy, carbon] | |
}) | |
fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown") | |
st.plotly_chart(style_figure(fig)) | |
# Generate recommendations if impact values are not zero | |
if water > 0 or energy > 0 or carbon > 0: | |
recommendations = generate_recommendations(water, energy, carbon) | |
st.markdown(f""" | |
<div class="highlight"> | |
<h2>Recommendations to Lower Environmental Impacts</h2> | |
<p>{recommendations}</p> | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.error("Failed to load dataset.") |