File size: 10,687 Bytes
01f8a8c
972688e
 
665f64e
 
01f8a8c
665f64e
3268523
fcc385b
3268523
 
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
3268523
 
 
f7d942c
665f64e
3268523
665f64e
 
3268523
f7d942c
3268523
 
 
abd0a76
665f64e
 
3268523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665f64e
 
3268523
665f64e
3268523
 
 
 
 
 
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268523
 
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268523
 
665f64e
 
 
3268523
665f64e
3268523
 
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a140149
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bcae4c
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268523
665f64e
e7b455f
665f64e
 
5982535
665f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b455f
665f64e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import streamlit as st
import pandas as pd
import plotly.express as px
import os
from groq import Groq

# Add custom CSS for the app background and highlighted text
def add_background():
    background_url = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/BKG03.jpg"
    css = f"""
    <style>
    .stApp {{
        background-image: url("{background_url}");
        background-size: cover;
        background-position: center;
        background-attachment: fixed;
    }}
    .highlight {{
        background-color: rgba(27, 27, 27, 0.7); /* 70% opaque black */
        padding: 10px;
        border-radius: 5px;
        margin-bottom: 15px;
        color: white;
    }}
    </style>
    """
    st.markdown(css, unsafe_allow_html=True)

# Set page configuration
st.set_page_config(page_title="GreenLens AI", layout="wide")

# Call the background function
add_background()

# App title and subtitle
st.markdown("<h1 style='text-align: center; color: white;'>GreenLens AI</h1>", unsafe_allow_html=True)
st.markdown(
    """
    <p style='text-align: center; color: white; font-size: 18px;'>
    A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍
    </p>
    """,
    unsafe_allow_html=True,
)

# Dataset URL
DATASET_URL = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/DataSet01.xlsx"

# Load dataset from Hugging Face Spaces
@st.cache_data
def process_dataset(url):
    try:
        excel_content = pd.ExcelFile(url)
        fiber_data = pd.read_excel(excel_content, sheet_name="Fiber Impact Data")
        transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
        washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")

        # Convert data to dictionaries for calculations
        fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
        transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
        washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
        return fiber_impact_data, transport_impact_data, washing_impact_data
    except Exception as e:
        st.error(f"Error loading dataset: {e}")
        return None, None, None

# Calculate footprints
def calculate_footprints(weight, composition, lifecycle_inputs):
    water_fp, energy_fp, carbon_fp = 0, 0, 0
    for fiber, percentage in composition.items():
        if fiber in fiber_impact_data:
            data = fiber_impact_data[fiber]
            fraction = percentage / 100
            water_fp += data["Water (L/kg)"] * weight * fraction
            energy_fp += data["Energy (MJ/kg)"] * weight * fraction
            carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction

    # Add transport impact
    if lifecycle_inputs["transport_mode"] in transport_impact_data:
        carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight

    # Add washing impact
    if lifecycle_inputs["washing_temperature"] in washing_impact_data:
        washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
        washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
        washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
        washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
        dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
        water_fp += washing_water
        energy_fp += washing_energy
        carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])

    # Convert water from liters to kiloliters
    water_fp /= 1000
    return water_fp, energy_fp, carbon_fp

# Sidebar inputs
def get_inputs(prefix):
    weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
    st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Material Composition (%)</h3>", unsafe_allow_html=True)
    cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 0, step=1, key=f"{prefix}_cotton")
    polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 0, step=1, key=f"{prefix}_polyester")
    nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 0, step=1, key=f"{prefix}_nylon")
    acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 0, step=1, key=f"{prefix}_acrylic")
    viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 0, step=1, key=f"{prefix}_viscose")

    if cotton + polyester + nylon + acrylic + viscose != 100:
        st.sidebar.error("Fiber composition must sum to 100%!")

    st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Transport Inputs</h3>", unsafe_allow_html=True)
    transport_mode = st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode")
    transport_distance = st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=0, step=10, key=f"{prefix}_transport_distance")

    lifecycle_inputs = {
        "washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=0, key=f"{prefix}_wash_cycles"),
        "washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
        "use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
        "transport_mode": transport_mode,
        "transport_distance": transport_distance,
    }

    composition = {
        "Conventional Cotton": cotton,
        "Polyester": polyester,
        "Nylon 6": nylon,
        "Acrylic": acrylic,
        "Viscose": viscose,
    }
    return weight, composition, lifecycle_inputs

# Adjust graph styling
def style_figure(fig):
    fig.update_layout(
        plot_bgcolor="rgba(27, 27, 27, 0.8)",  # 20% transparency
        paper_bgcolor="rgba(27, 27, 27, 0.8)",  # 20% transparency
        font=dict(color="white"),  # Font color set to white
        title_font=dict(size=18, color="white"),  # Title font white
        xaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
        yaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
    )
    fig.update_traces(marker=dict(color="white", line=dict(color="gray", width=1)))  # Simulate 3D effect with border
    return fig

# Generate recommendations using Groq API
def generate_recommendations(water, energy, carbon):
    try:
        client = Groq(api_key="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")
        prompt = (
            f"The environmental impact values for a textile product are as follows:\n"
            f"Water Footprint: {water:.2f} kL\n"
            f"Energy Footprint: {energy:.2f} MJ\n"
            f"Carbon Footprint: {carbon:.2f} kg CO2e\n"
            f"Provide recommendations to lower these impacts."
        )

        response = client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model="llama-3.3-70b-versatile",
        )

        return response.choices[0].message.content
    except Exception as e:
        return f"Error generating recommendations: {e}"

# Main application logic
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)

if fiber_impact_data and transport_impact_data and washing_impact_data:
    comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")

    if comparison_mode:
        # Input for two assessments
        col1, col2 = st.columns(2)
        with col1:
            weight1, composition1, lifecycle1 = get_inputs("Assessment 1")
        with col2:
            weight2, composition2, lifecycle2 = get_inputs("Assessment 2")

        # Calculate footprints for both assessments
        water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
        water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)

        # Display numerical comparison
        st.markdown(f"""
        <div class="highlight">
        <h2>Numerical Comparison</h2>
        <p>Assessment 1: Water: {water1:.2f} kL, Energy: {energy1:.2f} MJ, Carbon: {carbon1:.2f} kg CO2e</p>
        <p>Assessment 2: Water: {water2:.2f} kL, Energy: {energy2:.2f} MJ, Carbon: {carbon2:.2f} kg CO2e</p>
        </div>
        """, unsafe_allow_html=True)

        # Bar chart comparison
        comparison_data = pd.DataFrame({
            "Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
            "Assessment 1": [water1, energy1, carbon1],
            "Assessment 2": [water2, energy2, carbon2],
        })
        fig = px.bar(
            comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
            x="Footprint Type",
            y="Value",
            color="Assessment",
            title="Comparison of Assessments"
        )
        st.plotly_chart(style_figure(fig))
    else:
        # Input for a single assessment
        weight, composition, lifecycle = get_inputs("Single")
        water, energy, carbon = calculate_footprints(weight, composition, lifecycle)

        # Display results
        st.markdown(f"""
        <div class="highlight">
        <h2>Single Assessment Results</h2>
        <p>Water Footprint: {water:.2f} kL</p>
        <p>Energy Footprint: {energy:.2f} MJ</p>
        <p>Carbon Footprint: {carbon:.2f} kg CO2e</p>
        </div>
        """, unsafe_allow_html=True)

        # Bar chart for single assessment
        result_data = pd.DataFrame({
            "Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
            "Value": [water, energy, carbon]
        })
        fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
        st.plotly_chart(style_figure(fig))

        # Generate recommendations if impact values are not zero
        if water > 0 or energy > 0 or carbon > 0:
            recommendations = generate_recommendations(water, energy, carbon)
            st.markdown(f"""
            <div class="highlight">
            <h2>Recommendations to Lower Environmental Impacts</h2>
            <p>{recommendations}</p>
            </div>
            """, unsafe_allow_html=True)
else:
    st.error("Failed to load dataset.")