Spaces:
Sleeping
Sleeping
File size: 10,687 Bytes
01f8a8c 972688e 665f64e 01f8a8c 665f64e 3268523 fcc385b 3268523 665f64e 3268523 f7d942c 665f64e 3268523 665f64e 3268523 f7d942c 3268523 abd0a76 665f64e 3268523 665f64e 3268523 665f64e 3268523 665f64e 3268523 665f64e 3268523 665f64e 3268523 665f64e 3268523 665f64e a140149 665f64e 3bcae4c 665f64e 3268523 665f64e e7b455f 665f64e 5982535 665f64e e7b455f 665f64e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import streamlit as st
import pandas as pd
import plotly.express as px
import os
from groq import Groq
# Add custom CSS for the app background and highlighted text
def add_background():
background_url = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/BKG03.jpg"
css = f"""
<style>
.stApp {{
background-image: url("{background_url}");
background-size: cover;
background-position: center;
background-attachment: fixed;
}}
.highlight {{
background-color: rgba(27, 27, 27, 0.7); /* 70% opaque black */
padding: 10px;
border-radius: 5px;
margin-bottom: 15px;
color: white;
}}
</style>
"""
st.markdown(css, unsafe_allow_html=True)
# Set page configuration
st.set_page_config(page_title="GreenLens AI", layout="wide")
# Call the background function
add_background()
# App title and subtitle
st.markdown("<h1 style='text-align: center; color: white;'>GreenLens AI</h1>", unsafe_allow_html=True)
st.markdown(
"""
<p style='text-align: center; color: white; font-size: 18px;'>
A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍
</p>
""",
unsafe_allow_html=True,
)
# Dataset URL
DATASET_URL = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/DataSet01.xlsx"
# Load dataset from Hugging Face Spaces
@st.cache_data
def process_dataset(url):
try:
excel_content = pd.ExcelFile(url)
fiber_data = pd.read_excel(excel_content, sheet_name="Fiber Impact Data")
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")
# Convert data to dictionaries for calculations
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
return fiber_impact_data, transport_impact_data, washing_impact_data
except Exception as e:
st.error(f"Error loading dataset: {e}")
return None, None, None
# Calculate footprints
def calculate_footprints(weight, composition, lifecycle_inputs):
water_fp, energy_fp, carbon_fp = 0, 0, 0
for fiber, percentage in composition.items():
if fiber in fiber_impact_data:
data = fiber_impact_data[fiber]
fraction = percentage / 100
water_fp += data["Water (L/kg)"] * weight * fraction
energy_fp += data["Energy (MJ/kg)"] * weight * fraction
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction
# Add transport impact
if lifecycle_inputs["transport_mode"] in transport_impact_data:
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight
# Add washing impact
if lifecycle_inputs["washing_temperature"] in washing_impact_data:
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
water_fp += washing_water
energy_fp += washing_energy
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
# Convert water from liters to kiloliters
water_fp /= 1000
return water_fp, energy_fp, carbon_fp
# Sidebar inputs
def get_inputs(prefix):
weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Material Composition (%)</h3>", unsafe_allow_html=True)
cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 0, step=1, key=f"{prefix}_cotton")
polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 0, step=1, key=f"{prefix}_polyester")
nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 0, step=1, key=f"{prefix}_nylon")
acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 0, step=1, key=f"{prefix}_acrylic")
viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 0, step=1, key=f"{prefix}_viscose")
if cotton + polyester + nylon + acrylic + viscose != 100:
st.sidebar.error("Fiber composition must sum to 100%!")
st.sidebar.markdown(f"<h3 style='color: green;'>{prefix} Transport Inputs</h3>", unsafe_allow_html=True)
transport_mode = st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode")
transport_distance = st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=0, step=10, key=f"{prefix}_transport_distance")
lifecycle_inputs = {
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=0, key=f"{prefix}_wash_cycles"),
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
"transport_mode": transport_mode,
"transport_distance": transport_distance,
}
composition = {
"Conventional Cotton": cotton,
"Polyester": polyester,
"Nylon 6": nylon,
"Acrylic": acrylic,
"Viscose": viscose,
}
return weight, composition, lifecycle_inputs
# Adjust graph styling
def style_figure(fig):
fig.update_layout(
plot_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency
paper_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency
font=dict(color="white"), # Font color set to white
title_font=dict(size=18, color="white"), # Title font white
xaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
yaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
)
fig.update_traces(marker=dict(color="white", line=dict(color="gray", width=1))) # Simulate 3D effect with border
return fig
# Generate recommendations using Groq API
def generate_recommendations(water, energy, carbon):
try:
client = Groq(api_key="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")
prompt = (
f"The environmental impact values for a textile product are as follows:\n"
f"Water Footprint: {water:.2f} kL\n"
f"Energy Footprint: {energy:.2f} MJ\n"
f"Carbon Footprint: {carbon:.2f} kg CO2e\n"
f"Provide recommendations to lower these impacts."
)
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.3-70b-versatile",
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating recommendations: {e}"
# Main application logic
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
if fiber_impact_data and transport_impact_data and washing_impact_data:
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
if comparison_mode:
# Input for two assessments
col1, col2 = st.columns(2)
with col1:
weight1, composition1, lifecycle1 = get_inputs("Assessment 1")
with col2:
weight2, composition2, lifecycle2 = get_inputs("Assessment 2")
# Calculate footprints for both assessments
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)
# Display numerical comparison
st.markdown(f"""
<div class="highlight">
<h2>Numerical Comparison</h2>
<p>Assessment 1: Water: {water1:.2f} kL, Energy: {energy1:.2f} MJ, Carbon: {carbon1:.2f} kg CO2e</p>
<p>Assessment 2: Water: {water2:.2f} kL, Energy: {energy2:.2f} MJ, Carbon: {carbon2:.2f} kg CO2e</p>
</div>
""", unsafe_allow_html=True)
# Bar chart comparison
comparison_data = pd.DataFrame({
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
"Assessment 1": [water1, energy1, carbon1],
"Assessment 2": [water2, energy2, carbon2],
})
fig = px.bar(
comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
x="Footprint Type",
y="Value",
color="Assessment",
title="Comparison of Assessments"
)
st.plotly_chart(style_figure(fig))
else:
# Input for a single assessment
weight, composition, lifecycle = get_inputs("Single")
water, energy, carbon = calculate_footprints(weight, composition, lifecycle)
# Display results
st.markdown(f"""
<div class="highlight">
<h2>Single Assessment Results</h2>
<p>Water Footprint: {water:.2f} kL</p>
<p>Energy Footprint: {energy:.2f} MJ</p>
<p>Carbon Footprint: {carbon:.2f} kg CO2e</p>
</div>
""", unsafe_allow_html=True)
# Bar chart for single assessment
result_data = pd.DataFrame({
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
"Value": [water, energy, carbon]
})
fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
st.plotly_chart(style_figure(fig))
# Generate recommendations if impact values are not zero
if water > 0 or energy > 0 or carbon > 0:
recommendations = generate_recommendations(water, energy, carbon)
st.markdown(f"""
<div class="highlight">
<h2>Recommendations to Lower Environmental Impacts</h2>
<p>{recommendations}</p>
</div>
""", unsafe_allow_html=True)
else:
st.error("Failed to load dataset.") |