File size: 18,485 Bytes
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
 
 
 
 
 
e8bea69
89c0b51
 
 
 
e8bea69
 
 
 
 
 
 
 
 
 
 
 
89c0b51
 
e8bea69
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
89c0b51
e8bea69
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
89c0b51
e8bea69
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b51
e8bea69
 
89c0b51
e8bea69
 
 
 
 
 
 
 
 
 
89c0b51
 
 
e8bea69
 
 
89c0b51
e8bea69
 
89c0b51
e8bea69
 
89c0b51
e8bea69
 
89c0b51
e8bea69
 
 
 
 
89c0b51
e8bea69
89c0b51
 
 
 
 
 
e8bea69
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# import spaces
# import logging
# import gradio as gr
# import os
# import uuid
# from datetime import datetime
# import numpy as np
# from configs.configs_base import configs as configs_base
# from configs.configs_data import data_configs
# from configs.configs_inference import inference_configs
# from runner.inference import download_infercence_cache, update_inference_configs, infer_predict, infer_detect, InferenceRunner
# from protenix.config import parse_configs, parse_sys_args
# from runner.msa_search import update_infer_json
# from protenix.web_service.prediction_visualization import plot_best_confidence_measure, PredictionLoader
# from process_data import process_data
# import json
# from typing import Dict, List
# from Bio.PDB import MMCIFParser, PDBIO
# import tempfile
# import shutil
# from Bio import PDB
# from gradio_molecule3d import Molecule3D

# EXAMPLE_PATH = './examples/example.json'
# example_json=[{'sequences': [{'proteinChain': {'sequence': 'MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH', 'count': 2}}, {'dnaSequence': {'sequence': 'CTAGGTAACATTACTCGCG', 'count': 2}}, {'dnaSequence': {'sequence': 'GCGAGTAATGTTAC', 'count': 2}}, {'ligand': {'ligand': 'CCD_PCG', 'count': 2}}], 'name': '7pzb_need_search_msa'}]

# # Custom CSS for styling
# custom_css = """
# #logo {
#     width: 50%;
# }
# .title {
#     font-size: 32px;
#     font-weight: bold;
#     color: #4CAF50;
#     display: flex;
#     align-items: center; /* Vertically center the logo and text */
# }
# """


# os.environ["LAYERNORM_TYPE"] = "fast_layernorm"
# os.environ["USE_DEEPSPEED_EVO_ATTTENTION"] = "False"
# # Set environment variable in the script
# #os.environ['CUTLASS_PATH'] = './cutlass'

# # reps = [
# #     {
# #         "model": 0,
# #         "chain": "",
# #         "resname": "",
# #         "style": "cartoon",  # Use cartoon style
# #         "color": "whiteCarbon",
# #         "residue_range": "",
# #         "around": 0,
# #         "byres": False,
# #         "visible": True  # Ensure this representation is visible
# #     }
# # ]

# reps = [
#     {
#         "model": 0,
#         "chain": "",
#         "resname": "",
#         "style": "cartoon",
#         "color": "whiteCarbon",
#         "residue_range": "",
#         "around": 0,
#         "byres": False,
#         "opacity": 0.2,
#     },
#     {
#         "model": 1,
#         "chain": "",
#         "resname": "",
#         "style": "cartoon",
#         "color": "cyanCarbon",
#         "residue_range": "",
#         "around": 0,
#         "byres": False,
#         "opacity": 0.8,
#     }
# ]
# ##


# def align_pdb_files(pdb_file_1, pdb_file_2):
#     # Load the structures
#     parser = PDB.PPBuilder()
#     io = PDB.PDBIO()
#     structure_1 = PDB.PDBParser(QUIET=True).get_structure('Structure_1', pdb_file_1)
#     structure_2 = PDB.PDBParser(QUIET=True).get_structure('Structure_2', pdb_file_2)

#     # Superimpose the second structure onto the first
#     super_imposer = PDB.Superimposer()
#     model_1 = structure_1[0]
#     model_2 = structure_2[0]

#     # Extract the coordinates from the two structures
#     atoms_1 = [atom for atom in model_1.get_atoms() if atom.get_name() == "CA"]  # Use CA atoms
#     atoms_2 = [atom for atom in model_2.get_atoms() if atom.get_name() == "CA"]

#     # Align the structures based on the CA atoms
#     coord_1 = [atom.get_coord() for atom in atoms_1]
#     coord_2 = [atom.get_coord() for atom in atoms_2]
    
#     super_imposer.set_atoms(atoms_1, atoms_2)
#     super_imposer.apply(model_2)  # Apply the transformation to model_2

#     # Save the aligned structure back to the original file
#     io.set_structure(structure_2)  # Save the aligned structure to the second file (original file)
#     io.save(pdb_file_2)

# # Function to convert .cif to .pdb and save as a temporary file
# def convert_cif_to_pdb(cif_path):
#     """
#     Convert a CIF file to a PDB file and save it as a temporary file.

#     Args:
#         cif_path (str): Path to the input CIF file.

#     Returns:
#         str: Path to the temporary PDB file.
#     """
#     # Initialize the MMCIF parser
#     parser = MMCIFParser()
#     structure = parser.get_structure("protein", cif_path)

#     # Create a temporary file for the PDB output
#     with tempfile.NamedTemporaryFile(suffix=".pdb", delete=False) as temp_file:
#         temp_pdb_path = temp_file.name

#         # Save the structure as a PDB file
#         io = PDBIO()
#         io.set_structure(structure)
#         io.save(temp_pdb_path)

#     return temp_pdb_path

# def plot_3d(pred_loader):
#     # Get the CIF file path for the given prediction ID
#     cif_path = sorted(pred_loader.cif_paths)[0]

#     # Convert the CIF file to a temporary PDB file
#     temp_pdb_path = convert_cif_to_pdb(cif_path)

#     return temp_pdb_path, cif_path

# def parse_json_input(json_data: List[Dict]) -> Dict:
#     """Convert Protenix JSON format to UI-friendly structure"""
#     components = {
#         "protein_chains": [],
#         "dna_sequences": [],
#         "ligands": [],
#         "complex_name": ""
#     }
    
#     for entry in json_data:
#         components["complex_name"] = entry.get("name", "")
#         for seq in entry["sequences"]:
#             if "proteinChain" in seq:
#                 components["protein_chains"].append({
#                     "sequence": seq["proteinChain"]["sequence"],
#                     "count": seq["proteinChain"]["count"]
#                 })
#             elif "dnaSequence" in seq:
#                 components["dna_sequences"].append({
#                     "sequence": seq["dnaSequence"]["sequence"],
#                     "count": seq["dnaSequence"]["count"]
#                 })
#             elif "ligand" in seq:
#                 components["ligands"].append({
#                     "type": seq["ligand"]["ligand"],
#                     "count": seq["ligand"]["count"]
#                 })
#     return components

# def create_protenix_json(input_data: Dict) -> List[Dict]:
#     """Convert UI inputs to Protenix JSON format"""
#     sequences = []
    
#     for pc in input_data["protein_chains"]:
#         sequences.append({
#             "proteinChain": {
#                 "sequence": pc["sequence"],
#                 "count": pc["count"]
#             }
#         })
    
#     for dna in input_data["dna_sequences"]:
#         sequences.append({
#             "dnaSequence": {
#                 "sequence": dna["sequence"],
#                 "count": dna["count"]
#             }
#         })
    
#     for lig in input_data["ligands"]:
#         sequences.append({
#             "ligand": {
#                 "ligand": lig["type"],
#                 "count": lig["count"]
#             }
#         })
    
#     return [{
#         "sequences": sequences,
#         "name": input_data["complex_name"]
#     }]


# #@torch.inference_mode()
# @spaces.GPU(duration=120)  # Specify a duration to avoid timeout
# def predict_structure(input_collector: dict):
#         #first initialize runner
#         runner = InferenceRunner(configs)
#         """Handle both input types"""
#         os.makedirs("./output", exist_ok=True)
        
#         # Generate random filename with timestamp
#         random_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
#         save_path = os.path.join("./output", f"{random_name}.json")

#         print(input_collector)

#         # Handle JSON input
#         if input_collector["json"]:
#             # Handle different input types
#             if isinstance(input_collector["json"], str):  # Example JSON case (file path)
#                 input_data = json.load(open(input_collector["json"]))
#             elif hasattr(input_collector["json"], "name"):  # File upload case
#                 input_data = json.load(open(input_collector["json"].name))
#             else:  # Direct JSON data case
#                 input_data = input_collector["json"]
#         else:  # Manual input case
#             input_data = create_protenix_json(input_collector["data"])

#         with open(save_path, "w") as f:
#             json.dump(input_data, f, indent=2)

#         if input_data==example_json and input_collector['watermark']==True:
#             configs.saved_path = './output/example_output/'
#         else:
#             # run msa
#             json_file = update_infer_json(save_path, './output', True)

#             # Run prediction
#             configs.input_json_path = json_file
#             configs.watermark = input_collector['watermark']
#             configs.saved_path = os.path.join("./output/", random_name)
#             infer_predict(runner, configs)
#             #saved_path = os.path.join('./output', f"{sample_name}", f"seed_{seed}", 'predictions')

#         # Generate visualizations
#         pred_loader = PredictionLoader(os.path.join(configs.saved_path, 'predictions'))
#         view3d, cif_path = plot_3d(pred_loader=pred_loader)
#         if configs.watermark:
#             pred_loader = PredictionLoader(os.path.join(configs.saved_path, 'predictions_orig'))
#             view3d_orig, _ = plot_3d(pred_loader=pred_loader)
#             align_pdb_files(view3d, view3d_orig)
#             view3d = [view3d, view3d_orig]
#         plot_best_confidence_measure(os.path.join(configs.saved_path, 'predictions'))
#         confidence_img_path = os.path.join(os.path.join(configs.saved_path, 'predictions'), "best_sample_confidence.png")

#         return view3d, confidence_img_path, cif_path


# logger = logging.getLogger(__name__)
# LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
# logging.basicConfig(
#     format=LOG_FORMAT,
#     level=logging.INFO,
#     datefmt="%Y-%m-%d %H:%M:%S",
#     filemode="w",
# )
# configs_base["use_deepspeed_evo_attention"] = (
#     os.environ.get("USE_DEEPSPEED_EVO_ATTTENTION", False) == "False"
# )
# arg_str = "--seeds 101 --dump_dir ./output --input_json_path ./examples/example.json --model.N_cycle 10 --sample_diffusion.N_sample 5 --sample_diffusion.N_step 200 "
# configs = {**configs_base, **{"data": data_configs}, **inference_configs}
# configs = parse_configs(
#     configs=configs,
#     arg_str=arg_str,
#     fill_required_with_null=True,
# )
# configs.load_checkpoint_path='./checkpoint.pt'
# download_infercence_cache()
# configs.use_deepspeed_evo_attention=False

# add_watermark = gr.Checkbox(label="Add Watermark", value=True)
# add_watermark1 = gr.Checkbox(label="Add Watermark", value=True)


# with gr.Blocks(title="FoldMark", css=custom_css) as demo:
#     with gr.Row():
#         # Use a Column to align the logo and title horizontally
#             gr.Image(value="./assets/foldmark_head.png", elem_id="logo", label="Logo", height=150, show_label=False)

#     with gr.Tab("Structure Predictor (JSON Upload)"):
#         # First create the upload component
#         json_upload = gr.File(label="Upload JSON", file_types=[".json"])
        
#         # Then create the example component that references it
#         gr.Examples(
#             examples=[[EXAMPLE_PATH]],
#             inputs=[json_upload],
#             label="Click to use example JSON:",
#             examples_per_page=1
#         )
        
#         # Rest of the components
#         upload_name = gr.Textbox(label="Complex Name (optional)")
#         upload_output = gr.JSON(label="Parsed Components")
        
#         json_upload.upload(
#             fn=lambda f: parse_json_input(json.load(open(f.name))),
#             inputs=json_upload,
#             outputs=upload_output
#         )

#         # Shared prediction components
#         with gr.Row():
#             add_watermark.render()
#             submit_btn = gr.Button("Predict Structure", variant="primary")
#             #structure_view = gr.HTML(label="3D Visualization")

#         with gr.Row():
#             view3d = Molecule3D(label="3D Visualization", reps=reps)
#         legend = gr.Markdown("""
#         **Color Legend:**

#         - <span style="color:grey">Unwatermarked Structure</span>
#         - <span style="color:cyan">Watermarked Structure</span>
#         """)
#         with gr.Row():
#             cif_file = gr.File(label="Download CIF File")
#         with gr.Row():
#             confidence_plot_image = gr.Image(label="Confidence Measures")
        
#         input_collector = gr.JSON(visible=False)

#         # Map inputs to a dictionary
#         submit_btn.click(
#             fn=lambda j, w: {"json": j, "watermark": w},
#             inputs=[json_upload, add_watermark],
#             outputs=input_collector
#         ).then(
#             fn=predict_structure,
#             inputs=input_collector,
#             outputs=[view3d, confidence_plot_image, cif_file]
#         )

#         gr.Markdown(""" 
#         The example of the uploaded json file for structure prediction.
#         <pre>
#             [{
#         "sequences": [
#             {
#                 "proteinChain": {
#                     "sequence": "MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH",
#                     "count": 2
#                 }
#             },
#             {
#                 "dnaSequence": {
#                     "sequence": "CTAGGTAACATTACTCGCG",
#                     "count": 2
#                 }
#             },
#             {
#                 "dnaSequence": {
#                     "sequence": "GCGAGTAATGTTAC",
#                     "count": 2
#                 }
#             },
#             {
#                 "ligand": {
#                     "ligand": "CCD_PCG",
#                     "count": 2
#                 }
#             }
#         ],
#         "name": "7pzb"
#         }]
#         </pre>
#         """)
    
#     with gr.Tab("Structure Predictor (Manual Input)"):
#         with gr.Row():
#             complex_name = gr.Textbox(label="Complex Name")
            
#         # Replace gr.Group with gr.Accordion
#         with gr.Accordion(label="Protein Chains", open=True):
#             protein_chains = gr.Dataframe(
#                 headers=["Sequence", "Count"],
#                 datatype=["str", "number"],
#                 row_count=1,
#                 col_count=(2, "fixed")
#             )
            
#         # Repeat for other groups
#         with gr.Accordion(label="DNA Sequences", open=True):
#             dna_sequences = gr.Dataframe(
#                 headers=["Sequence", "Count"],
#                 datatype=["str", "number"],
#                 row_count=1
#             )
            
#         with gr.Accordion(label="Ligands", open=True):
#             ligands = gr.Dataframe(
#                 headers=["Ligand Type", "Count"],
#                 datatype=["str", "number"],
#                 row_count=1
#             )
            
#         manual_output = gr.JSON(label="Generated JSON")
        
#         complex_name.change(
#             fn=lambda x: {"complex_name": x},
#             inputs=complex_name,
#             outputs=manual_output
#         )

#         # Shared prediction components
#         with gr.Row():
#             add_watermark1.render()
#             submit_btn = gr.Button("Predict Structure", variant="primary")
#             #structure_view = gr.HTML(label="3D Visualization")

#         with gr.Row():
#             view3d = Molecule3D(label="3D Visualization (Gray: Unwatermarked; Cyan: Watermarked)", reps=reps)

#         with gr.Row():
#             cif_file = gr.File(label="Download CIF File")
#         with gr.Row():
#             confidence_plot_image = gr.Image(label="Confidence Measures")
        
#         input_collector = gr.JSON(visible=False)

#         # Map inputs to a dictionary
#         submit_btn.click(
#             fn=lambda c, p, d, l, w: {"data": {"complex_name": c, "protein_chains": p, "dna_sequences": d, "ligands": l}, "watermark": w},
#             inputs=[complex_name, protein_chains, dna_sequences, ligands, add_watermark1],
#             outputs=input_collector
#         ).then(
#             fn=predict_structure,
#             inputs=input_collector,
#             outputs=[view3d, confidence_plot_image, cif_file]
#         )

#     @spaces.GPU(duration=120)
#     def is_watermarked(file):
#         #first initialize runner
#         runner = InferenceRunner(configs)
#         # Generate a unique subdirectory and filename
#         unique_id = str(uuid.uuid4().hex[:8])
#         subdir = os.path.join('./output', unique_id)
#         os.makedirs(subdir, exist_ok=True)
#         filename = f"{unique_id}.cif"
#         file_path = os.path.join(subdir, filename)
        
#         # Save the uploaded file to the new location
#         shutil.copy(file.name, file_path)
        
#         # Call your processing functions
#         configs.process_success = process_data(subdir)
#         configs.subdir = subdir
#         result = infer_detect(runner, configs)
#         # This function should return 'Watermarked' or 'Not Watermarked'
#         temp_pdb_path = convert_cif_to_pdb(file_path)
#         if result==False:  
#             return "Not Watermarked", temp_pdb_path
#         else:
#             return "Watermarked", temp_pdb_path
        
    

#     with gr.Tab("Watermark Detector"):
#         # First create the upload component
#         cif_upload = gr.File(label="Upload .cif", file_types=["..cif"])

#         with gr.Row():
#             cif_3d_view = Molecule3D(label="3D Visualization of Input", reps=reps)

#         # Prediction output
#         prediction_output = gr.Textbox(label="Prediction")

#         # Define the interaction
#         cif_upload.change(is_watermarked, inputs=cif_upload, outputs=[prediction_output, cif_3d_view])
        
#         # Example files
#         example_files = [
#         "./examples/7r6r_watermarked.cif",
#         "./examples/7pzb_unwatermarked.cif"
#         ]

#         gr.Examples(examples=example_files, inputs=cif_upload)
        


    


# if __name__ == "__main__":
#     demo.launch(share=True)