Zaixi's picture
Add large file
89c0b51
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import logging
import pickle
from collections import defaultdict
from pathlib import Path
from typing import Any, Optional, Union
import biotite
import biotite.structure as struc
import biotite.structure.io.pdbx as pdbx
import numpy as np
from biotite.structure import AtomArray
from rdkit import Chem
from configs.configs_data import data_configs
from protenix.data.substructure_perms import get_substructure_perms
logger = logging.getLogger(__name__)
COMPONENTS_FILE = data_configs["ccd_components_file"]
RKDIT_MOL_PKL = Path(data_configs["ccd_components_rdkit_mol_file"])
@functools.lru_cache
def biotite_load_ccd_cif() -> pdbx.CIFFile:
"""biotite load CCD components file
Returns:
pdbx.CIFFile: ccd components file
"""
return pdbx.CIFFile.read(COMPONENTS_FILE)
def _map_central_to_leaving_groups(component) -> Optional[dict[str, list[list[str]]]]:
"""map each central atom (bonded atom) index to leaving atom groups in component (atom_array).
Returns:
dict[str, list[list[str]]]: central atom name to leaving atom groups (atom names).
"""
comp = component.copy()
# Eg: ions
if comp.bonds is None:
return {}
central_to_leaving_groups = defaultdict(list)
for c_idx in np.flatnonzero(~comp.leaving_atom_flag):
bonds, _ = comp.bonds.get_bonds(c_idx)
for l_idx in bonds:
if comp.leaving_atom_flag[l_idx]:
comp.bonds.remove_bond(c_idx, l_idx)
group_idx = struc.find_connected(comp.bonds, l_idx)
if not np.all(comp.leaving_atom_flag[group_idx]):
return None
central_to_leaving_groups[comp.atom_name[c_idx]].append(
comp.atom_name[group_idx].tolist()
)
return central_to_leaving_groups
@functools.lru_cache
def get_component_atom_array(
ccd_code: str, keep_leaving_atoms: bool = False, keep_hydrogens=False
) -> AtomArray:
"""get component atom array
Args:
ccd_code (str): ccd code
keep_leaving_atoms (bool, optional): keep leaving atoms. Defaults to False.
keep_hydrogens (bool, optional): keep hydrogens. Defaults to False.
Returns:
AtomArray: Biotite AtomArray of CCD component
with additional attribute: leaving_atom_flag (bool)
"""
ccd_cif = biotite_load_ccd_cif()
if ccd_code not in ccd_cif:
logger.warning(f"Warning: get_component_atom_array() can not parse {ccd_code}")
return None
try:
comp = pdbx.get_component(ccd_cif, data_block=ccd_code, use_ideal_coord=True)
except biotite.InvalidFileError as e:
# Eg: UNL without atom.
logger.warning(
f"Warning: get_component_atom_array() can not parse {ccd_code} for {e}"
)
return None
atom_category = ccd_cif[ccd_code]["chem_comp_atom"]
leaving_atom_flag = atom_category["pdbx_leaving_atom_flag"].as_array()
comp.set_annotation("leaving_atom_flag", leaving_atom_flag == "Y")
for atom_id in ["alt_atom_id", "pdbx_component_atom_id"]:
comp.set_annotation(atom_id, atom_category[atom_id].as_array())
if not keep_leaving_atoms:
comp = comp[~comp.leaving_atom_flag]
if not keep_hydrogens:
# EG: ND4
comp = comp[~np.isin(comp.element, ["H", "D"])]
# Map central atom index to leaving group (atom_indices) in component (atom_array).
comp.central_to_leaving_groups = _map_central_to_leaving_groups(comp)
if comp.central_to_leaving_groups is None:
logger.warning(
f"Warning: ccd {ccd_code} has leaving atom group bond to more than one central atom, central_to_leaving_groups is None."
)
return comp
@functools.lru_cache(maxsize=None)
def get_one_letter_code(ccd_code: str) -> Union[str, None]:
"""get one_letter_code from CCD components file.
normal return is one letter: ALA --> A, DT --> T
unknown protein: X
unknown DNA or RNA: N
other unknown: None
some ccd_code will return more than one letter:
eg: XXY --> THG
Args:
ccd_code (str): _description_
Returns:
str: one letter code
"""
ccd_cif = biotite_load_ccd_cif()
if ccd_code not in ccd_cif:
return None
one = ccd_cif[ccd_code]["chem_comp"]["one_letter_code"].as_item()
if one == "?":
return None
else:
return one
@functools.lru_cache(maxsize=None)
def get_mol_type(ccd_code: str) -> str:
"""get mol_type from CCD components file.
based on _chem_comp.type
http://mmcif.rcsb.org/dictionaries/mmcif_pdbx_v50.dic/Items/_chem_comp.type.html
not use _chem_comp.pdbx_type, because it is not consistent with _chem_comp.type
e.g. ccd 000 --> _chem_comp.type="NON-POLYMER" _chem_comp.pdbx_type="ATOMP"
https://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v5_next.dic/Items/_struct_asym.pdbx_type.html
Args:
ccd_code (str): ccd code
Returns:
str: mol_type, one of {"protein", "rna", "dna", "ligand"}
"""
ccd_cif = biotite_load_ccd_cif()
if ccd_code not in ccd_cif:
return "ligand"
link_type = ccd_cif[ccd_code]["chem_comp"]["type"].as_item().upper()
if "PEPTIDE" in link_type and link_type != "PEPTIDE-LIKE":
return "protein"
if "DNA" in link_type:
return "dna"
if "RNA" in link_type:
return "rna"
return "ligand"
def get_all_ccd_code() -> list:
"""get all ccd code from components file"""
ccd_cif = biotite_load_ccd_cif()
return list(ccd_cif.keys())
_ccd_rdkit_mols: dict[str, Chem.Mol] = {}
def get_component_rdkit_mol(ccd_code: str) -> Union[Chem.Mol, None]:
"""get rdkit mol by PDBeCCDUtils
https://github.com/PDBeurope/ccdutils
preprocessing all ccd components in _components_file at first time run.
Args:
ccd_code (str): ccd code
Returns
rdkit.Chem.Mol: rdkit mol with ref coord
"""
global _ccd_rdkit_mols
# _ccd_rdkit_mols is not empty
if _ccd_rdkit_mols:
return _ccd_rdkit_mols.get(ccd_code, None)
rdkit_mol_pkl = RKDIT_MOL_PKL
if rdkit_mol_pkl.exists():
with open(rdkit_mol_pkl, "rb") as f:
_ccd_rdkit_mols = pickle.load(f)
return _ccd_rdkit_mols.get(ccd_code, None)
else:
raise FileNotFoundError(
f"CCD components file {rdkit_mol_pkl} not found, please download it to your DATA_ROOT_DIR before running."
"See https://github.com/bytedance/Protenix"
)
@functools.lru_cache
def get_ccd_ref_info(ccd_code: str, return_perm: bool = True) -> dict[str, Any]:
"""
Ref: AlphaFold3 SI Chapter 2.8
Reference features. Features derived from a residue, nucleotide or ligand’s reference conformer.
Given an input CCD code or SMILES string, the conformer is typically generated
with RDKit v.2023_03_3 [25] using ETKDGv3 [26]. On error, we fall back to using the CCD ideal coordinates,
or finally the representative coordinates
if they are from before our training date cut-off (2021-09-30 unless otherwise stated).
At the end, any atom coordinates still missing are set to zeros.
Get reference atom mapping and coordinates.
Args:
name (str): CCD name
return_perm (bool): return atom permutations.
Returns:
Dict:
ccd: ccd code
atom_map: atom name to atom index
coord: atom coordinates
charge: atom formal charge
perm: atom permutation
"""
mol = get_component_rdkit_mol(ccd_code)
if mol is None:
return {}
if mol.GetNumAtoms() == 0: # eg: "UNL"
logger.warning(
f"Warning: mol {ccd_code} from get_component_rdkit_mol() has no atoms,"
"get_ccd_ref_info() return empty dict"
)
return {}
conf = mol.GetConformer(mol.ref_conf_id)
coord = conf.GetPositions()
charge = np.array([atom.GetFormalCharge() for atom in mol.GetAtoms()])
results = {
"ccd": ccd_code, # str
"atom_map": mol.atom_map, # dict[str,int]: atom name to atom index
"coord": coord, # np.ndarray[float]: atom coordinates, shape:(n_atom,3)
"mask": mol.ref_mask, # np.ndarray[bool]: atom mask, shape:(n_atom,)
"charge": charge, # np.ndarray[int]: atom formal charge, shape:(n_atom,)
}
if return_perm:
try:
Chem.SanitizeMol(mol)
perm = get_substructure_perms(mol, MaxMatches=1000)
except:
# Sanitize failed, permutation is unavailable
perm = np.array(
[
[
i
for i, atom in enumerate(mol.GetAtoms())
if atom.GetAtomicNum() != 1
]
]
)
# np.ndarray[int]: atom permutation, shape:(n_atom_wo_h, n_perm)
results["perm"] = perm.T
return results
# Modified from biotite to use consistent ccd components file
def _connect_inter_residue(
atoms: AtomArray, residue_starts: np.ndarray
) -> struc.BondList:
"""
Create a :class:`BondList` containing the bonds between adjacent
amino acid or nucleotide residues.
Parameters
----------
atoms : AtomArray or AtomArrayStack
The structure to create the :class:`BondList` for.
residue_starts : ndarray, dtype=int
Return value of
``get_residue_starts(atoms, add_exclusive_stop=True)``.
Returns
-------
BondList
A bond list containing all inter residue bonds.
"""
bonds = []
atom_names = atoms.atom_name
res_names = atoms.res_name
res_ids = atoms.res_id
chain_ids = atoms.chain_id
# Iterate over all starts excluding:
# - the last residue and
# - exclusive end index of 'atoms'
for i in range(len(residue_starts) - 2):
curr_start_i = residue_starts[i]
next_start_i = residue_starts[i + 1]
after_next_start_i = residue_starts[i + 2]
# Check if the current and next residue is in the same chain
if chain_ids[next_start_i] != chain_ids[curr_start_i]:
continue
# Check if the current and next residue
# have consecutive residue IDs
# (Same residue ID is also possible if insertion code is used)
if res_ids[next_start_i] - res_ids[curr_start_i] > 1:
continue
# Get link type for this residue from RCSB components.cif
curr_link = get_mol_type(res_names[curr_start_i])
next_link = get_mol_type(res_names[next_start_i])
if curr_link == "protein" and next_link in "protein":
curr_connect_atom_name = "C"
next_connect_atom_name = "N"
elif curr_link in ["dna", "rna"] and next_link in ["dna", "rna"]:
curr_connect_atom_name = "O3'"
next_connect_atom_name = "P"
else:
# Create no bond if the connection types of consecutive
# residues are not compatible
continue
# Index in atom array for atom name in current residue
# Addition of 'curr_start_i' is necessary, as only a slice of
# 'atom_names' is taken, beginning at 'curr_start_i'
curr_connect_indices = np.where(
atom_names[curr_start_i:next_start_i] == curr_connect_atom_name
)[0]
curr_connect_indices += curr_start_i
# Index in atom array for atom name in next residue
next_connect_indices = np.where(
atom_names[next_start_i:after_next_start_i] == next_connect_atom_name
)[0]
next_connect_indices += next_start_i
if len(curr_connect_indices) == 0 or len(next_connect_indices) == 0:
# The connector atoms are not found in the adjacent residues
# -> skip this bond
continue
bonds.append(
(curr_connect_indices[0], next_connect_indices[0], struc.BondType.SINGLE)
)
return struc.BondList(atoms.array_length(), np.array(bonds, dtype=np.uint32))
def add_inter_residue_bonds(
atom_array: AtomArray,
exclude_struct_conn_pairs: bool = False,
remove_far_inter_chain_pairs: bool = False,
) -> AtomArray:
"""
add polymer bonds (C-N or O3'-P) between adjacent residues based on auth_seq_id.
exclude_struct_conn_pairs: if True, do not add bond between adjacent residues already has non-standard polymer bonds
on atom C or N or O3' or P.
remove_far_inter_chain_pairs: if True, remove inter chain (based on label_asym_id) bonds that are far away from each other.
returns:
AtomArray: Biotite AtomArray merged inter residue bonds into atom_array.bonds
"""
res_starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True)
inter_bonds = _connect_inter_residue(atom_array, res_starts)
if atom_array.bonds is None:
atom_array.bonds = inter_bonds
return atom_array
select_mask = np.ones(len(inter_bonds._bonds), dtype=bool)
if exclude_struct_conn_pairs:
for b_idx, (atom_i, atom_j, b_type) in enumerate(inter_bonds._bonds):
atom_k = atom_i if atom_array.atom_name[atom_i] in ("N", "O3'") else atom_j
bonds, types = atom_array.bonds.get_bonds(atom_k)
if len(bonds) == 0:
continue
for b in bonds:
if (
# adjacent residues
abs((res_starts <= b).sum() - (res_starts <= atom_k).sum()) == 1
and atom_array.chain_id[b] == atom_array.chain_id[atom_k]
and atom_array.atom_name[b] not in ("C", "P")
):
select_mask[b_idx] = False
break
if remove_far_inter_chain_pairs:
if not hasattr(atom_array, "label_asym_id"):
logging.warning(
"label_asym_id not found, far inter chain bonds will not be removed"
)
for b_idx, (atom_i, atom_j, b_type) in enumerate(inter_bonds._bonds):
if atom_array.label_asym_id[atom_i] != atom_array.label_asym_id[atom_j]:
coord_i = atom_array.coord[atom_i]
coord_j = atom_array.coord[atom_j]
if np.linalg.norm(coord_i - coord_j) > 2.5:
select_mask[b_idx] = False
# filter out removed_inter_bonds from atom_array.bonds
remove_bonds = inter_bonds._bonds[~select_mask]
remove_mask = np.isin(atom_array.bonds._bonds[:, 0], remove_bonds[:, 0]) & np.isin(
atom_array.bonds._bonds[:, 1], remove_bonds[:, 1]
)
atom_array.bonds._bonds = atom_array.bonds._bonds[~remove_mask]
# merged normal inter_bonds into atom_array.bonds
inter_bonds._bonds = inter_bonds._bonds[select_mask]
atom_array.bonds = atom_array.bonds.merge(inter_bonds)
return atom_array
def res_names_to_sequence(res_names: list[str]) -> str:
"""convert res_names to sequences {chain_id: canonical_sequence} based on CCD
Return
str: canonical_sequence
"""
seq = ""
for res_name in res_names:
one = get_one_letter_code(res_name)
one = "X" if one is None else one
one = "X" if len(one) > 1 else one
seq += one
return seq