FoldMark / protenix /data /dataset.py
Zaixi's picture
Add large file
89c0b51
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import random
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Callable, Optional, Union
import numpy as np
import pandas as pd
import torch
from biotite.structure.atoms import AtomArray
from ml_collections.config_dict import ConfigDict
from torch.utils.data import Dataset
from protenix.data.constants import EvaluationChainInterface
from protenix.data.data_pipeline import DataPipeline
from protenix.data.featurizer import Featurizer
from protenix.data.msa_featurizer import MSAFeaturizer
from protenix.data.tokenizer import TokenArray
from protenix.data.utils import data_type_transform, make_dummy_feature
from protenix.utils.cropping import CropData
from protenix.utils.file_io import read_indices_csv
from protenix.utils.logger import get_logger
from protenix.utils.torch_utils import dict_to_tensor
logger = get_logger(__name__)
class BaseSingleDataset(Dataset):
"""
dataset for a single data source
data = self.__item__(idx)
return a dict of features and labels, the keys and the shape are defined in protenix.data.utils
"""
def __init__(
self,
mmcif_dir: Union[str, Path],
bioassembly_dict_dir: Optional[Union[str, Path]],
indices_fpath: Union[str, Path],
cropping_configs: dict[str, Any],
msa_featurizer: Optional[MSAFeaturizer] = None,
template_featurizer: Optional[Any] = None,
name: str = None,
**kwargs,
) -> None:
super(BaseSingleDataset, self).__init__()
# Configs
self.mmcif_dir = mmcif_dir
self.bioassembly_dict_dir = bioassembly_dict_dir
self.indices_fpath = indices_fpath
self.cropping_configs = cropping_configs
self.name = name
# General dataset configs
self.ref_pos_augment = kwargs.get("ref_pos_augment", True)
self.lig_atom_rename = kwargs.get("lig_atom_rename", False)
self.reassign_continuous_chain_ids = kwargs.get(
"reassign_continuous_chain_ids", False
)
self.shuffle_mols = kwargs.get("shuffle_mols", False)
self.shuffle_sym_ids = kwargs.get("shuffle_sym_ids", False)
# Typically used for test sets
self.find_pocket = kwargs.get("find_pocket", False)
self.find_all_pockets = kwargs.get("find_all_pockets", False) # for dev
self.find_eval_chain_interface = kwargs.get("find_eval_chain_interface", False)
self.group_by_pdb_id = kwargs.get("group_by_pdb_id", False) # for test set
self.sort_by_n_token = kwargs.get("sort_by_n_token", False)
# Typically used for training set
self.random_sample_if_failed = kwargs.get("random_sample_if_failed", False)
self.use_reference_chains_only = kwargs.get("use_reference_chains_only", False)
self.is_distillation = kwargs.get("is_distillation", False)
# Configs for data filters
self.max_n_token = kwargs.get("max_n_token", -1)
self.pdb_list = kwargs.get("pdb_list", None)
if len(self.pdb_list) == 0:
self.pdb_list = None
# Used for removing rows in the indices list. Column names and excluded values are specified in this dict.
self.exclusion_dict = kwargs.get("exclusion", {})
self.limits = kwargs.get(
"limits", -1
) # Limit number of indices rows, mainly for test
self.error_dir = kwargs.get("error_dir", None)
if self.error_dir is not None:
os.makedirs(self.error_dir, exist_ok=True)
self.msa_featurizer = msa_featurizer
self.template_featurizer = template_featurizer
# Read data
self.indices_list = self.read_indices_list(indices_fpath)
@staticmethod
def read_pdb_list(pdb_list: Union[list, str]) -> Optional[list]:
"""
Reads a list of PDB IDs from a file or directly from a list.
Args:
pdb_list: A list of PDB IDs or a file path containing PDB IDs.
Returns:
A list of PDB IDs if the input is valid, otherwise None.
"""
if pdb_list is None:
return None
if isinstance(pdb_list, list):
return pdb_list
with open(pdb_list, "r") as f:
pdb_filter_list = []
for l in f.readlines():
l = l.strip()
if l:
pdb_filter_list.append(l)
return pdb_filter_list
def read_indices_list(self, indices_fpath: Union[str, Path]) -> pd.DataFrame:
"""
Reads and processes a list of indices from a CSV file.
Args:
indices_fpath: Path to the CSV file containing the indices.
Returns:
A DataFrame containing the processed indices.
"""
indices_list = read_indices_csv(indices_fpath)
num_data = len(indices_list)
logger.info(f"#Rows in indices list: {num_data}")
# Filter by pdb_list
if self.pdb_list is not None:
pdb_filter_list = set(self.read_pdb_list(pdb_list=self.pdb_list))
indices_list = indices_list[indices_list["pdb_id"].isin(pdb_filter_list)]
logger.info(f"[filtered by pdb_list] #Rows: {len(indices_list)}")
# Filter by max_n_token
if self.max_n_token > 0:
valid_mask = indices_list["num_tokens"].astype(int) <= self.max_n_token
removed_list = indices_list[~valid_mask]
indices_list = indices_list[valid_mask]
logger.info(f"[removed] #Rows: {len(removed_list)}")
logger.info(f"[removed] #PDB: {removed_list['pdb_id'].nunique()}")
logger.info(
f"[filtered by n_token ({self.max_n_token})] #Rows: {len(indices_list)}"
)
# Filter by exclusion_dict
for col_name, exclusion_list in self.exclusion_dict.items():
cols = col_name.split("|")
exclusion_set = {tuple(excl.split("|")) for excl in exclusion_list}
def is_valid(row):
return tuple(row[col] for col in cols) not in exclusion_set
valid_mask = indices_list.apply(is_valid, axis=1)
indices_list = indices_list[valid_mask].reset_index(drop=True)
logger.info(
f"[Excluded by {col_name} -- {exclusion_list}] #Rows: {len(indices_list)}"
)
self.print_data_stats(indices_list)
# Group by pdb_id
# A list of dataframe. Each contains one pdb with multiple rows.
if self.group_by_pdb_id:
indices_list = [
df.reset_index() for _, df in indices_list.groupby("pdb_id", sort=True)
]
if self.sort_by_n_token:
# Sort the dataset in a descending order, so that if OOM it will raise Error at an early stage.
if self.group_by_pdb_id:
indices_list = sorted(
indices_list,
key=lambda df: int(df["num_tokens"].iloc[0]),
reverse=True,
)
else:
indices_list = indices_list.sort_values(
by="num_tokens", key=lambda x: x.astype(int), ascending=False
).reset_index(drop=True)
if self.find_eval_chain_interface:
# Remove data that does not contain eval_type in the EvaluationChainInterface list
if self.group_by_pdb_id:
indices_list = [
df
for df in indices_list
if len(
set(df["eval_type"].to_list()).intersection(
set(EvaluationChainInterface)
)
)
> 0
]
else:
indices_list = indices_list[
indices_list["eval_type"].apply(
lambda x: x in EvaluationChainInterface
)
]
if self.limits > 0 and len(indices_list) > self.limits:
logger.info(
f"Limit indices list size from {len(indices_list)} to {self.limits}"
)
indices_list = indices_list[: self.limits]
return indices_list
def print_data_stats(self, df: pd.DataFrame) -> None:
"""
Prints statistics about the dataset, including the distribution of molecular group types.
Args:
df: A DataFrame containing the indices list.
"""
if self.name:
logger.info("-" * 10 + f" Dataset {self.name}" + "-" * 10)
df["mol_group_type"] = df.apply(
lambda row: "_".join(
sorted(
[
str(row["mol_1_type"]),
str(row["mol_2_type"]).replace("nan", "intra"),
]
)
),
axis=1,
)
group_size_dict = dict(df["mol_group_type"].value_counts())
for i, n_i in group_size_dict.items():
logger.info(f"{i}: {n_i}/{len(df)}({round(n_i*100/len(df), 2)}%)")
logger.info("-" * 30)
if "cluster_id" in df.columns:
n_cluster = df["cluster_id"].nunique()
for i in group_size_dict:
n_i = df[df["mol_group_type"] == i]["cluster_id"].nunique()
logger.info(f"{i}: {n_i}/{n_cluster}({round(n_i*100/n_cluster, 2)}%)")
logger.info("-" * 30)
logger.info(f"Final pdb ids: {len(set(df.pdb_id.tolist()))}")
logger.info("-" * 30)
def __len__(self) -> int:
return len(self.indices_list)
def save_error_data(self, idx: int, error_message: str) -> None:
"""
Saves the error data for a specific index to a JSON file in the error directory.
Args:
idx: The index of the data sample that caused the error.
error_message: The error message to be saved.
"""
if self.error_dir is not None:
sample_indice = self._get_sample_indice(idx=idx)
data = sample_indice.to_dict()
data["error"] = error_message
filename = f"{sample_indice.pdb_id}-{sample_indice.chain_1_id}-{sample_indice.chain_2_id}.json"
fpath = os.path.join(self.error_dir, filename)
if not os.path.exists(fpath):
with open(fpath, "w") as f:
json.dump(data, f)
def __getitem__(self, idx: int):
"""
Retrieves a data sample by processing the given index.
If an error occurs, it attempts to handle it by either saving the error data or randomly sampling another index.
Args:
idx: The index of the data sample to retrieve.
Returns:
A dictionary containing the processed data sample.
"""
# Try at most 10 times
for _ in range(10):
try:
data = self.process_one(idx)
return data
except Exception as e:
error_message = f"{e} at idx {idx}:\n{traceback.format_exc()}"
self.save_error_data(idx, error_message)
if self.random_sample_if_failed:
logger.exception(f"[skip data {idx}] {error_message}")
# Random sample an index
idx = random.choice(range(len(self.indices_list)))
continue
else:
raise Exception(e)
return data
def _get_bioassembly_data(
self, idx: int
) -> tuple[list[dict[str, Any]], dict[str, Any]]:
sample_indice = self._get_sample_indice(idx=idx)
if self.bioassembly_dict_dir is not None:
bioassembly_dict_fpath = os.path.join(
self.bioassembly_dict_dir, sample_indice.pdb_id + ".pkl.gz"
)
else:
bioassembly_dict_fpath = None
bioassembly_dict = DataPipeline.get_data_bioassembly(
bioassembly_dict_fpath=bioassembly_dict_fpath
)
bioassembly_dict["pdb_id"] = sample_indice.pdb_id
return sample_indice, bioassembly_dict, bioassembly_dict_fpath
@staticmethod
def _reassign_atom_array_chain_id(atom_array: AtomArray):
"""
In experiments conducted to observe overfitting effects using training sets,
the pre-stored AtomArray in the training set may experience issues with discontinuous chain IDs due to filtering.
Consequently, a temporary patch has been implemented to resolve this issue.
e.g. 3x6u asym_id_int = [0, 1, 2, ... 18, 20] -> reassigned_asym_id_int [0, 1, 2, ..., 18, 19]
"""
def _get_contiguous_array(array):
array_uniq = np.sort(np.unique(array))
map_dict = {i: idx for idx, i in enumerate(array_uniq)}
new_array = np.vectorize(map_dict.get)(array)
return new_array
atom_array.asym_id_int = _get_contiguous_array(atom_array.asym_id_int)
atom_array.entity_id_int = _get_contiguous_array(atom_array.entity_id_int)
atom_array.sym_id_int = _get_contiguous_array(atom_array.sym_id_int)
return atom_array
@staticmethod
def _shuffle_array_based_on_mol_id(token_array: TokenArray, atom_array: AtomArray):
"""
Shuffle both token_array and atom_array.
Atoms/tokens with the same mol_id will be shuffled as a integrated component.
"""
# Get token mol_id
centre_atom_indices = token_array.get_annotation("centre_atom_index")
token_mol_id = atom_array[centre_atom_indices].mol_id
# Get unique molecule IDs and shuffle them in place
shuffled_mol_ids = np.unique(token_mol_id).copy()
np.random.shuffle(shuffled_mol_ids)
# Get shuffled token indices
original_token_indices = np.arange(len(token_mol_id))
shuffled_token_indices = []
for mol_id in shuffled_mol_ids:
mol_token_indices = original_token_indices[token_mol_id == mol_id]
shuffled_token_indices.append(mol_token_indices)
shuffled_token_indices = np.concatenate(shuffled_token_indices)
# Get shuffled token and atom array
# Use `CropData.select_by_token_indices` to shuffle safely
token_array, atom_array, _, _ = CropData.select_by_token_indices(
token_array=token_array,
atom_array=atom_array,
selected_token_indices=shuffled_token_indices,
)
return token_array, atom_array
@staticmethod
def _assign_random_sym_id(atom_array: AtomArray):
"""
Assign random sym_id for chains of the same entity_id
e.g.
when entity_id = 0
sym_id_int = [0, 1, 2] -> random_sym_id_int = [2, 0, 1]
when entity_id = 1
sym_id_int = [0, 1, 2, 3] -> random_sym_id_int = [3, 0, 1, 2]
"""
def _shuffle(x):
x_unique = np.sort(np.unique(x))
x_shuffled = x_unique.copy()
np.random.shuffle(x_shuffled) # shuffle in-place
map_dict = dict(zip(x_unique, x_shuffled))
new_x = np.vectorize(map_dict.get)(x)
return new_x.copy()
for entity_id in np.unique(atom_array.label_entity_id):
mask = atom_array.label_entity_id == entity_id
atom_array.sym_id_int[mask] = _shuffle(atom_array.sym_id_int[mask])
return atom_array
def process_one(
self, idx: int, return_atom_token_array: bool = False
) -> dict[str, dict]:
"""
Processes a single data sample by retrieving bioassembly data, applying various transformations, and cropping the data.
It then extracts features and labels, and optionally returns the processed atom and token arrays.
Args:
idx: The index of the data sample to process.
return_atom_token_array: Whether to return the processed atom and token arrays.
Returns:
A dict containing the input features, labels, basic_info and optionally the processed atom and token arrays.
"""
sample_indice, bioassembly_dict, bioassembly_dict_fpath = (
self._get_bioassembly_data(idx=idx)
)
if self.use_reference_chains_only:
# Get the reference chains
ref_chain_ids = [sample_indice.chain_1_id, sample_indice.chain_2_id]
if sample_indice.type == "chain":
ref_chain_ids.pop(-1)
# Remove other chains from the bioassembly_dict
# Remove them safely using the crop method
token_centre_atom_indices = bioassembly_dict["token_array"].get_annotation(
"centre_atom_index"
)
token_chain_id = bioassembly_dict["atom_array"][
token_centre_atom_indices
].chain_id
is_ref_chain = np.isin(token_chain_id, ref_chain_ids)
bioassembly_dict["token_array"], bioassembly_dict["atom_array"], _, _ = (
CropData.select_by_token_indices(
token_array=bioassembly_dict["token_array"],
atom_array=bioassembly_dict["atom_array"],
selected_token_indices=np.arange(len(is_ref_chain))[is_ref_chain],
)
)
if self.shuffle_mols:
bioassembly_dict["token_array"], bioassembly_dict["atom_array"] = (
self._shuffle_array_based_on_mol_id(
token_array=bioassembly_dict["token_array"],
atom_array=bioassembly_dict["atom_array"],
)
)
if self.shuffle_sym_ids:
bioassembly_dict["atom_array"] = self._assign_random_sym_id(
bioassembly_dict["atom_array"]
)
if self.reassign_continuous_chain_ids:
bioassembly_dict["atom_array"] = self._reassign_atom_array_chain_id(
bioassembly_dict["atom_array"]
)
# Crop
(
crop_method,
cropped_token_array,
cropped_atom_array,
cropped_msa_features,
cropped_template_features,
reference_token_index,
) = self.crop(
sample_indice=sample_indice,
bioassembly_dict=bioassembly_dict,
**self.cropping_configs,
)
feat, label, label_full = self.get_feature_and_label(
idx=idx,
token_array=cropped_token_array,
atom_array=cropped_atom_array,
msa_features=cropped_msa_features,
template_features=cropped_template_features,
full_atom_array=bioassembly_dict["atom_array"],
is_spatial_crop="spatial" in crop_method.lower(),
)
# Basic info, e.g. dimension related items
basic_info = {
"pdb_id": (
bioassembly_dict["pdb_id"]
if self.is_distillation is False
else sample_indice["pdb_id"]
),
"N_asym": torch.tensor([len(torch.unique(feat["asym_id"]))]),
"N_token": torch.tensor([feat["token_index"].shape[0]]),
"N_atom": torch.tensor([feat["atom_to_token_idx"].shape[0]]),
"N_msa": torch.tensor([feat["msa"].shape[0]]),
"bioassembly_dict_fpath": bioassembly_dict_fpath,
"N_msa_prot_pair": torch.tensor([feat["prot_pair_num_alignments"]]),
"N_msa_prot_unpair": torch.tensor([feat["prot_unpair_num_alignments"]]),
"N_msa_rna_pair": torch.tensor([feat["rna_pair_num_alignments"]]),
"N_msa_rna_unpair": torch.tensor([feat["rna_unpair_num_alignments"]]),
}
for mol_type in ("protein", "ligand", "rna", "dna"):
abbr = {"protein": "prot", "ligand": "lig"}
abbr_type = abbr.get(mol_type, mol_type)
mol_type_mask = feat[f"is_{mol_type}"].bool()
n_atom = int(mol_type_mask.sum(dim=-1).item())
n_token = len(torch.unique(feat["atom_to_token_idx"][mol_type_mask]))
basic_info[f"N_{abbr_type}_atom"] = torch.tensor([n_atom])
basic_info[f"N_{abbr_type}_token"] = torch.tensor([n_token])
# Add chain level chain_id
asymn_id_to_chain_id = {
atom.asym_id_int: atom.chain_id for atom in cropped_atom_array
}
chain_id_list = [
asymn_id_to_chain_id[asymn_id_int]
for asymn_id_int in sorted(asymn_id_to_chain_id.keys())
]
basic_info["chain_id"] = chain_id_list
data = {
"input_feature_dict": feat,
"label_dict": label,
"label_full_dict": label_full,
"basic": basic_info,
}
if return_atom_token_array:
data["cropped_atom_array"] = cropped_atom_array
data["cropped_token_array"] = cropped_token_array
return data
def crop(
self,
sample_indice: pd.Series,
bioassembly_dict: dict[str, Any],
crop_size: int,
method_weights: list[float],
contiguous_crop_complete_lig: bool = True,
spatial_crop_complete_lig: bool = True,
drop_last: bool = True,
remove_metal: bool = True,
) -> tuple[str, TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
"""
Crops the bioassembly data based on the specified configurations.
Returns:
A tuple containing the cropping method, cropped token array, cropped atom array,
cropped MSA features, and cropped template features.
"""
return DataPipeline.crop(
one_sample=sample_indice,
bioassembly_dict=bioassembly_dict,
crop_size=crop_size,
msa_featurizer=self.msa_featurizer,
template_featurizer=self.template_featurizer,
method_weights=method_weights,
contiguous_crop_complete_lig=contiguous_crop_complete_lig,
spatial_crop_complete_lig=spatial_crop_complete_lig,
drop_last=drop_last,
remove_metal=remove_metal,
)
def _get_sample_indice(self, idx: int) -> pd.Series:
"""
Retrieves the sample indice for a given index. If the dataset is grouped by PDB ID, it returns the first row of the PDB-idx.
Otherwise, it returns the row at the specified index.
Args:
idx: The index of the data sample to retrieve.
Returns:
A pandas Series containing the sample indice.
"""
if self.group_by_pdb_id:
# Row-0 of PDB-idx
sample_indice = self.indices_list[idx].iloc[0]
else:
sample_indice = self.indices_list.iloc[idx]
return sample_indice
def _get_eval_chain_interface_mask(
self, idx: int, atom_array_chain_id: np.ndarray
) -> tuple[np.ndarray, np.ndarray, torch.Tensor, torch.Tensor]:
"""
Retrieves the evaluation chain/interface mask for a given index.
Args:
idx: The index of the data sample.
atom_array_chain_id: An array containing the chain IDs of the atom array.
Returns:
A tuple containing the evaluation type, cluster ID, chain 1 mask, and chain 2 mask.
"""
if self.group_by_pdb_id:
df = self.indices_list[idx]
else:
df = self.indices_list.iloc[idx : idx + 1]
# Only consider chain/interfaces defined in EvaluationChainInterface
df = df[df["eval_type"].apply(lambda x: x in EvaluationChainInterface)].copy()
if len(df) < 1:
raise ValueError(
f"Cannot find a chain/interface for evaluation in the PDB."
)
def get_atom_mask(row):
chain_1_mask = atom_array_chain_id == row["chain_1_id"]
if row["type"] == "chain":
chain_2_mask = chain_1_mask
else:
chain_2_mask = atom_array_chain_id == row["chain_2_id"]
chain_1_mask = torch.tensor(chain_1_mask).bool()
chain_2_mask = torch.tensor(chain_2_mask).bool()
if chain_1_mask.sum() == 0 or chain_2_mask.sum() == 0:
return None, None
return chain_1_mask, chain_2_mask
df["chain_1_mask"], df["chain_2_mask"] = zip(*df.apply(get_atom_mask, axis=1))
df = df[df["chain_1_mask"].notna()] # drop NaN
if len(df) < 1:
raise ValueError(
f"Cannot find a chain/interface for evaluation in the atom_array."
)
eval_type = np.array(df["eval_type"].tolist())
cluster_id = np.array(df["cluster_id"].tolist())
# [N_eval, N_atom]
chain_1_mask = torch.stack(df["chain_1_mask"].tolist())
# [N_eval, N_atom]
chain_2_mask = torch.stack(df["chain_2_mask"].tolist())
return eval_type, cluster_id, chain_1_mask, chain_2_mask
def get_feature_and_label(
self,
idx: int,
token_array: TokenArray,
atom_array: AtomArray,
msa_features: dict[str, Any],
template_features: dict[str, Any],
full_atom_array: AtomArray,
is_spatial_crop: bool = True,
) -> tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
"""
Get feature and label information for a given data point.
It uses a Featurizer object to obtain input features and labels, and applies several
steps to add other features and labels. Finally, it returns the feature dictionary, label
dictionary, and a full label dictionary.
Args:
idx: Index of the data point.
token_array: Token array representing the amino acid sequence.
atom_array: Atom array containing atomic information.
msa_features: Dictionary of MSA features.
template_features: Dictionary of template features.
full_atom_array: Full atom array containing all atoms.
is_spatial_crop: Flag indicating whether spatial cropping is applied, by default True.
Returns:
A tuple containing the feature dictionary and the label dictionary.
Raises:
ValueError: If the ligand cannot be found in the data point.
"""
# Get feature and labels from Featurizer
feat = Featurizer(
cropped_token_array=token_array,
cropped_atom_array=atom_array,
ref_pos_augment=self.ref_pos_augment,
lig_atom_rename=self.lig_atom_rename,
)
features_dict = feat.get_all_input_features()
labels_dict = feat.get_labels()
# Permutation list for atom permutation
features_dict["atom_perm_list"] = feat.get_atom_permutation_list()
# Labels for multi-chain permutation
# Note: the returned full_atom_array may contain fewer atoms than the input
label_full_dict, full_atom_array = Featurizer.get_gt_full_complex_features(
atom_array=full_atom_array,
cropped_atom_array=atom_array,
get_cropped_asym_only=is_spatial_crop,
)
# Masks for Pocket Metrics
if self.find_pocket:
# Get entity_id of the interested ligand
sample_indice = self._get_sample_indice(idx=idx)
if sample_indice.mol_1_type == "ligand":
lig_entity_id = str(sample_indice.entity_1_id)
lig_chain_id = str(sample_indice.chain_1_id)
elif sample_indice.mol_2_type == "ligand":
lig_entity_id = str(sample_indice.entity_2_id)
lig_chain_id = str(sample_indice.chain_2_id)
else:
raise ValueError(f"Cannot find ligand from this data point.")
# Make sure the cropped array contains interested ligand
assert lig_entity_id in set(atom_array.label_entity_id)
assert lig_chain_id in set(atom_array.chain_id)
# Get asym ID of the specific ligand in the `main` pocket
lig_asym_id = atom_array.label_asym_id[atom_array.chain_id == lig_chain_id]
assert len(np.unique(lig_asym_id)) == 1
lig_asym_id = lig_asym_id[0]
ligands = [lig_asym_id]
if self.find_all_pockets:
# Get asym ID of other ligands with the same entity_id
all_lig_asym_ids = set(
full_atom_array[
full_atom_array.label_entity_id == lig_entity_id
].label_asym_id
)
ligands.extend(list(all_lig_asym_ids - set([lig_asym_id])))
# Note: the `main` pocket is the 0-indexed one.
# [N_pocket, N_atom], [N_pocket, N_atom].
# If not find_all_pockets, then N_pocket = 1.
interested_ligand_mask, pocket_mask = feat.get_lig_pocket_mask(
atom_array=full_atom_array, lig_label_asym_id=ligands
)
label_full_dict["pocket_mask"] = pocket_mask
label_full_dict["interested_ligand_mask"] = interested_ligand_mask
# Masks for Chain/Interface Metrics
if self.find_eval_chain_interface:
eval_type, cluster_id, chain_1_mask, chain_2_mask = (
self._get_eval_chain_interface_mask(
idx=idx, atom_array_chain_id=full_atom_array.chain_id
)
)
labels_dict["eval_type"] = eval_type # [N_eval]
labels_dict["cluster_id"] = cluster_id # [N_eval]
labels_dict["chain_1_mask"] = chain_1_mask # [N_eval, N_atom]
labels_dict["chain_2_mask"] = chain_2_mask # [N_eval, N_atom]
# Make dummy features for not implemented features
dummy_feats = []
if len(msa_features) == 0:
dummy_feats.append("msa")
else:
msa_features = dict_to_tensor(msa_features)
features_dict.update(msa_features)
if len(template_features) == 0:
dummy_feats.append("template")
else:
template_features = dict_to_tensor(template_features)
features_dict.update(template_features)
features_dict = make_dummy_feature(
features_dict=features_dict, dummy_feats=dummy_feats
)
# Transform to right data type
features_dict = data_type_transform(feat_or_label_dict=features_dict)
labels_dict = data_type_transform(feat_or_label_dict=labels_dict)
# Is_distillation
features_dict["is_distillation"] = torch.tensor([self.is_distillation])
if self.is_distillation is True:
features_dict["resolution"] = torch.tensor([-1.0])
return features_dict, labels_dict, label_full_dict
def get_msa_featurizer(configs, dataset_name: str, stage: str) -> Optional[Callable]:
"""
Creates and returns an MSAFeaturizer object based on the provided configurations.
Args:
configs: A dictionary containing the configurations for the MSAFeaturizer.
dataset_name: The name of the dataset.
stage: The stage of the dataset (e.g., 'train', 'test').
Returns:
An MSAFeaturizer object if MSA is enabled in the configurations, otherwise None.
"""
if "msa" in configs["data"] and configs["data"]["msa"]["enable"]:
msa_info = configs["data"]["msa"]
msa_args = deepcopy(msa_info)
if "msa" in (dataset_config := configs["data"][dataset_name]):
for k, v in dataset_config["msa"].items():
if k not in ["prot", "rna"]:
msa_args[k] = v
else:
for kk, vv in dataset_config["msa"][k].items():
msa_args[k][kk] = vv
prot_msa_args = msa_args["prot"]
prot_msa_args.update(
{
"dataset_name": dataset_name,
"merge_method": msa_args["merge_method"],
"max_size": msa_args["max_size"][stage],
}
)
rna_msa_args = msa_args["rna"]
rna_msa_args.update(
{
"dataset_name": dataset_name,
"merge_method": msa_args["merge_method"],
"max_size": msa_args["max_size"][stage],
}
)
return MSAFeaturizer(
prot_msa_args=prot_msa_args,
rna_msa_args=rna_msa_args,
enable_rna_msa=configs.data.msa.enable_rna_msa,
)
else:
return None
class WeightedMultiDataset(Dataset):
"""
A weighted dataset composed of multiple datasets with weights.
"""
def __init__(
self,
datasets: list[Dataset],
dataset_names: list[str],
datapoint_weights: list[list[float]],
dataset_sample_weights: list[torch.tensor],
):
"""
Initializes the WeightedMultiDataset.
Args:
datasets: A list of Dataset objects.
dataset_names: A list of dataset names corresponding to the datasets.
datapoint_weights: A list of lists containing sampling weights for each datapoint in the datasets.
dataset_sample_weights: A list of torch tensors containing sampling weights for each dataset.
"""
self.datasets = datasets
self.dataset_names = dataset_names
self.datapoint_weights = datapoint_weights
self.dataset_sample_weights = torch.Tensor(dataset_sample_weights)
self.iteration = 0
self.offset = 0
self.init_datasets()
def init_datasets(self):
"""Calculate global weights of each datapoint in datasets for future sampling."""
self.merged_datapoint_weights = []
self.weight = 0.0
self.dataset_indices = []
self.within_dataset_indices = []
for dataset_index, (
dataset,
datapoint_weight_list,
dataset_weight,
) in enumerate(
zip(self.datasets, self.datapoint_weights, self.dataset_sample_weights)
):
# normalize each dataset weights
weight_sum = sum(datapoint_weight_list)
datapoint_weight_list = [
dataset_weight * w / weight_sum for w in datapoint_weight_list
]
self.merged_datapoint_weights.extend(datapoint_weight_list)
self.weight += dataset_weight
self.dataset_indices.extend([dataset_index] * len(datapoint_weight_list))
self.within_dataset_indices.extend(list(range(len(datapoint_weight_list))))
self.merged_datapoint_weights = torch.tensor(
self.merged_datapoint_weights, dtype=torch.float64
)
def __len__(self) -> int:
return len(self.merged_datapoint_weights)
def __getitem__(self, index: int) -> dict[str, dict]:
return self.datasets[self.dataset_indices[index]][
self.within_dataset_indices[index]
]
def get_weighted_pdb_weight(
data_type: str,
cluster_size: int,
chain_count: dict,
eps: float = 1e-9,
beta_dict: Optional[dict] = None,
alpha_dict: Optional[dict] = None,
) -> float:
"""
Get sample weight for each example in a weighted PDB dataset.
data_type (str): Type of data, either 'chain' or 'interface'.
cluster_size (int): Cluster size of this chain/interface.
chain_count (dict): Count of each kind of chains, e.g., {"prot": int, "nuc": int, "ligand": int}.
eps (float, optional): A small epsilon value to avoid division by zero. Default is 1e-9.
beta_dict (Optional[dict], optional): Dictionary containing beta values for 'chain' and 'interface'.
alpha_dict (Optional[dict], optional): Dictionary containing alpha values for different chain types.
Returns:
float: Calculated weight for the given chain/interface.
"""
if not beta_dict:
beta_dict = {
"chain": 0.5,
"interface": 1,
}
if not alpha_dict:
alpha_dict = {
"prot": 3,
"nuc": 3,
"ligand": 1,
}
assert cluster_size > 0
assert data_type in ["chain", "interface"]
beta = beta_dict[data_type]
assert set(chain_count.keys()).issubset(set(alpha_dict.keys()))
weight = (
beta
* sum(
[alpha * chain_count[data_mode] for data_mode, alpha in alpha_dict.items()]
)
/ (cluster_size + eps)
)
return weight
def calc_weights_for_df(
indices_df: pd.DataFrame, beta_dict: dict[str, Any], alpha_dict: dict[str, Any]
) -> pd.DataFrame:
"""
Calculate weights for each example in the dataframe.
Args:
indices_df: A pandas DataFrame containing the indices.
beta_dict: A dictionary containing beta values for different data types.
alpha_dict: A dictionary containing alpha values for different data types.
Returns:
A pandas DataFrame with an column 'weights' containing the calculated weights.
"""
# Specific to assembly, and entities (chain or interface)
indices_df["pdb_sorted_entity_id"] = indices_df.apply(
lambda x: f"{x['pdb_id']}_{x['assembly_id']}_{'_'.join(sorted([str(x['entity_1_id']), str(x['entity_2_id'])]))}",
axis=1,
)
entity_member_num_dict = {}
for pdb_sorted_entity_id, sub_df in indices_df.groupby("pdb_sorted_entity_id"):
# Number of repeatative entities in the same assembly
entity_member_num_dict[pdb_sorted_entity_id] = len(sub_df)
indices_df["pdb_sorted_entity_id_member_num"] = indices_df.apply(
lambda x: entity_member_num_dict[x["pdb_sorted_entity_id"]], axis=1
)
cluster_size_record = {}
for cluster_id, sub_df in indices_df.groupby("cluster_id"):
cluster_size_record[cluster_id] = len(set(sub_df["pdb_sorted_entity_id"]))
weights = []
for _, row in indices_df.iterrows():
data_type = row["type"]
cluster_size = cluster_size_record[row["cluster_id"]]
chain_count = {"prot": 0, "nuc": 0, "ligand": 0}
for mol_type in [row["mol_1_type"], row["mol_2_type"]]:
if chain_count.get(mol_type) is None:
continue
chain_count[mol_type] += 1
# Weight specific to (assembly, entity(chain/interface))
weight = get_weighted_pdb_weight(
data_type=data_type,
cluster_size=cluster_size,
chain_count=chain_count,
beta_dict=beta_dict,
alpha_dict=alpha_dict,
)
weights.append(weight)
indices_df["weights"] = weights / indices_df["pdb_sorted_entity_id_member_num"]
return indices_df
def get_sample_weights(
sampler_type: str,
indices_df: pd.DataFrame = None,
beta_dict: dict = {
"chain": 0.5,
"interface": 1,
},
alpha_dict: dict = {
"prot": 3,
"nuc": 3,
"ligand": 1,
},
force_recompute_weight: bool = False,
) -> Union[pd.Series, list[float]]:
"""
Computes sample weights based on the specified sampler type.
Args:
sampler_type: The type of sampler to use ('weighted' or 'uniform').
indices_df: A pandas DataFrame containing the indices.
beta_dict: A dictionary containing beta values for different data types.
alpha_dict: A dictionary containing alpha values for different data types.
force_recompute_weight: Whether to force recomputation of weights even if they already exist.
Returns:
A list of sample weights.
Raises:
ValueError: If an unknown sampler type is provided.
"""
if sampler_type == "weighted":
assert indices_df is not None
if "weights" not in indices_df.columns or force_recompute_weight:
indices_df = calc_weights_for_df(
indices_df=indices_df,
beta_dict=beta_dict,
alpha_dict=alpha_dict,
)
return indices_df["weights"].astype("float32")
elif sampler_type == "uniform":
assert indices_df is not None
return [1 / len(indices_df) for _ in range(len(indices_df))]
else:
raise ValueError(f"Unknown sampler type: {sampler_type}")
def get_datasets(
configs: ConfigDict, error_dir: Optional[str]
) -> tuple[WeightedMultiDataset, dict[str, BaseSingleDataset]]:
"""
Get training and testing datasets given configs
Args:
configs: A ConfigDict containing the dataset configurations.
error_dir: The directory where error logs will be saved.
Returns:
A tuple containing the training dataset and a dictionary of testing datasets.
"""
def _get_dataset_param(config_dict, dataset_name: str, stage: str):
# Template_featurizer is under development
# Lig_atom_rename/shuffle_mols/shuffle_sym_ids do not affect the performance very much
return {
"name": dataset_name,
**config_dict["base_info"],
"cropping_configs": config_dict["cropping_configs"],
"error_dir": error_dir,
"msa_featurizer": get_msa_featurizer(configs, dataset_name, stage),
"template_featurizer": None,
"lig_atom_rename": config_dict.get("lig_atom_rename", False),
"shuffle_mols": config_dict.get("shuffle_mols", False),
"shuffle_sym_ids": config_dict.get("shuffle_sym_ids", False),
}
data_config = configs.data
logger.info(f"Using train sets {data_config.train_sets}")
assert len(data_config.train_sets) == len(
data_config.train_sampler.train_sample_weights
)
train_datasets = []
datapoint_weights = []
for train_name in data_config.train_sets:
config_dict = data_config[train_name].to_dict()
dataset_param = _get_dataset_param(
config_dict, dataset_name=train_name, stage="train"
)
dataset_param["ref_pos_augment"] = data_config.get(
"train_ref_pos_augment", True
)
dataset_param["limits"] = data_config.get("limits", -1)
train_dataset = BaseSingleDataset(**dataset_param)
train_datasets.append(train_dataset)
datapoint_weights.append(
get_sample_weights(
**data_config[train_name]["sampler_configs"],
indices_df=train_dataset.indices_list,
)
)
train_dataset = WeightedMultiDataset(
datasets=train_datasets,
dataset_names=data_config.train_sets,
datapoint_weights=datapoint_weights,
dataset_sample_weights=data_config.train_sampler.train_sample_weights,
)
test_datasets = {}
test_sets = data_config.test_sets
for test_name in test_sets:
config_dict = data_config[test_name].to_dict()
dataset_param = _get_dataset_param(
config_dict, dataset_name=test_name, stage="test"
)
dataset_param["ref_pos_augment"] = data_config.get("test_ref_pos_augment", True)
test_dataset = BaseSingleDataset(**dataset_param)
test_datasets[test_name] = test_dataset
return train_dataset, test_datasets