FoldMark / protenix /data /infer_data_pipeline.py
Zaixi's picture
Update protenix/data/infer_data_pipeline.py
6660af8 verified
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import traceback
import warnings
from typing import Any, Mapping
import torch
from biotite.structure import AtomArray
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from protenix.data.data_pipeline import DataPipeline
from protenix.data.json_to_feature import SampleDictToFeatures
from protenix.data.msa_featurizer import InferenceMSAFeaturizer
from protenix.data.utils import data_type_transform, make_dummy_feature
from protenix.utils.distributed import DIST_WRAPPER
from protenix.utils.torch_utils import dict_to_tensor
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", module="biotite")
def get_inference_dataloader(configs: Any) -> DataLoader:
"""
Creates and returns a DataLoader for inference using the InferenceDataset.
Args:
configs: A configuration object containing the necessary parameters for the DataLoader.
Returns:
A DataLoader object configured for inference.
"""
inference_dataset = InferenceDataset(
input_json_path=configs.input_json_path,
dump_dir=configs.dump_dir,
use_msa=configs.use_msa,
)
sampler = DistributedSampler(
dataset=inference_dataset,
num_replicas=DIST_WRAPPER.world_size,
rank=DIST_WRAPPER.rank,
shuffle=False,
)
dataloader = DataLoader(
dataset=inference_dataset,
batch_size=1,
sampler=sampler,
collate_fn=lambda batch: batch,
num_workers=0,
)
return dataloader
class InferenceDataset(Dataset):
def __init__(
self,
input_json_path: str,
dump_dir: str,
use_msa: bool = True,
) -> None:
self.input_json_path = input_json_path
self.dump_dir = dump_dir
self.use_msa = use_msa
with open(self.input_json_path, "r") as f:
self.inputs = json.load(f)
def process_one(
self,
single_sample_dict: Mapping[str, Any],
) -> tuple[dict[str, torch.Tensor], AtomArray, dict[str, float]]:
"""
Processes a single sample from the input JSON to generate features and statistics.
Args:
single_sample_dict: A dictionary containing the sample data.
Returns:
A tuple containing:
- A dictionary of features.
- An AtomArray object.
- A dictionary of time tracking statistics.
"""
# general features
t0 = time.time()
sample2feat = SampleDictToFeatures(
single_sample_dict,
)
features_dict, atom_array, token_array = sample2feat.get_feature_dict()
features_dict["distogram_rep_atom_mask"] = torch.Tensor(
atom_array.distogram_rep_atom_mask
).long()
entity_poly_type = sample2feat.entity_poly_type
t1 = time.time()
# Msa features
entity_to_asym_id = DataPipeline.get_label_entity_id_to_asym_id_int(atom_array)
msa_features = (
InferenceMSAFeaturizer.make_msa_feature(
bioassembly=single_sample_dict["sequences"],
entity_to_asym_id=entity_to_asym_id,
token_array=token_array,
atom_array=atom_array,
)
if self.use_msa
else {}
)
# Make dummy features for not implemented features
dummy_feats = ["template"]
if len(msa_features) == 0:
dummy_feats.append("msa")
else:
msa_features = dict_to_tensor(msa_features)
features_dict.update(msa_features)
features_dict = make_dummy_feature(
features_dict=features_dict,
dummy_feats=dummy_feats,
)
# Transform to right data type
feat = data_type_transform(feat_or_label_dict=features_dict)
t2 = time.time()
data = {}
data["input_feature_dict"] = feat
# Add dimension related items
N_token = feat["token_index"].shape[0]
N_atom = feat["atom_to_token_idx"].shape[0]
N_msa = feat["msa"].shape[0]
stats = {}
for mol_type in ["ligand", "protein", "dna", "rna"]:
mol_type_mask = feat[f"is_{mol_type}"].bool()
stats[f"{mol_type}/atom"] = int(mol_type_mask.sum(dim=-1).item())
stats[f"{mol_type}/token"] = len(
torch.unique(feat["atom_to_token_idx"][mol_type_mask])
)
N_asym = len(torch.unique(data["input_feature_dict"]["asym_id"]))
data.update(
{
"N_asym": torch.tensor([N_asym]),
"N_token": torch.tensor([N_token]),
"N_atom": torch.tensor([N_atom]),
"N_msa": torch.tensor([N_msa]),
}
)
def formatted_key(key):
type_, unit = key.split("/")
if type_ == "protein":
type_ = "prot"
elif type_ == "ligand":
type_ = "lig"
else:
pass
return f"N_{type_}_{unit}"
data.update(
{
formatted_key(k): torch.tensor([stats[k]])
for k in [
"protein/atom",
"ligand/atom",
"dna/atom",
"rna/atom",
"protein/token",
"ligand/token",
"dna/token",
"rna/token",
]
}
)
data.update({"entity_poly_type": entity_poly_type})
t3 = time.time()
time_tracker = {
"crop": t1 - t0,
"featurizer": t2 - t1,
"added_feature": t3 - t2,
}
return data, atom_array, time_tracker
def __len__(self) -> int:
return len(self.inputs)
def __getitem__(self, index: int) -> tuple[dict[str, torch.Tensor], AtomArray, str]:
try:
single_sample_dict = self.inputs[index]
sample_name = single_sample_dict["name"]
logger.info(f"Featurizing {sample_name}...")
data, atom_array, _ = self.process_one(
single_sample_dict=single_sample_dict
)
error_message = ""
except Exception as e:
data, atom_array = {}, None
error_message = f"{e}:\n{traceback.format_exc()}"
data["sample_name"] = single_sample_dict["name"]
data["sample_index"] = index
return data, atom_array, error_message