FoldMark / protenix /data /json_parser.py
Zaixi's picture
Add large file
89c0b51
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import copy
import logging
import random
import warnings
from collections import Counter
from typing import Any
import biotite.structure as struc
import numpy as np
from biotite.structure import AtomArray
from rdkit import Chem
from rdkit.Chem import AllChem
from protenix.data import ccd
logger = logging.getLogger(__name__)
DNA_1to3 = {
"A": "DA",
"G": "DG",
"C": "DC",
"T": "DT",
"X": "DN",
"I": "DI", # eg: pdb 114d
"N": "DN", # eg: pdb 7r6t-3DR
"U": "DU", # eg: pdb 7sd8
}
RNA_1to3 = {
"A": "A",
"G": "G",
"C": "C",
"U": "U",
"X": "N",
"I": "I", # eg: pdb 7wv5
"N": "N",
}
PROTEIN_1to3 = {
"A": "ALA",
"R": "ARG",
"N": "ASN",
"D": "ASP",
"C": "CYS",
"Q": "GLN",
"E": "GLU",
"G": "GLY",
"H": "HIS",
"I": "ILE",
"L": "LEU",
"K": "LYS",
"M": "MET",
"F": "PHE",
"P": "PRO",
"S": "SER",
"T": "THR",
"W": "TRP",
"Y": "TYR",
"V": "VAL",
"X": "UNK",
}
def add_reference_features(atom_array: AtomArray) -> AtomArray:
"""
Add reference features of each resiude to atom_array
Args:
atom_array (AtomArray): biotite AtomArray
Returns:
AtomArray: biotite AtomArray with reference features
- ref_pos: reference conformer atom positions
- ref_charge (n): reference conformer atom charges
- ref_mask: reference conformer atom masks
"""
atom_count = len(atom_array)
ref_pos = np.zeros((atom_count, 3), dtype=np.float32)
ref_charge = np.zeros(atom_count, dtype=int)
ref_mask = np.zeros(atom_count, dtype=int)
starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True)
for start, stop in zip(starts[:-1], starts[1:]):
res_name = atom_array.res_name[start]
if res_name == "UNL":
# UNL is smiles ligand, copy info from atom_array
ref_pos[start:stop] = atom_array.coord[start:stop]
ref_charge[start:stop] = atom_array.charge[start:stop]
ref_mask[start:stop] = 1
continue
ref_info = ccd.get_ccd_ref_info(res_name)
if ref_info:
atom_sub_idx = [
*map(ref_info["atom_map"].get, atom_array.atom_name[start:stop])
]
ref_pos[start:stop] = ref_info["coord"][atom_sub_idx]
ref_charge[start:stop] = ref_info["charge"][atom_sub_idx]
ref_mask[start:stop] = ref_info["mask"][atom_sub_idx]
else:
logging.warning(f"no reference info for {res_name}")
atom_array.set_annotation("ref_pos", ref_pos)
atom_array.set_annotation("ref_charge", ref_charge)
atom_array.set_annotation("ref_mask", ref_mask)
return atom_array
def _remove_non_std_ccd_leaving_atoms(atom_array: AtomArray) -> AtomArray:
"""
Check polymer connections and remove non-standard leaving atoms
Args:
atom_array (AtomArray): biotite AtomArray
Returns:
AtomArray: biotite AtomArray with leaving atoms removed.
"""
connected = np.zeros(atom_array.res_id[-1], dtype=bool)
for i, j, t in atom_array.bonds._bonds:
if abs(atom_array.res_id[i] - atom_array.res_id[j]) == 1:
connected[atom_array.res_id[[i, j]].min()] = True
leaving_atoms = np.zeros(len(atom_array), dtype=bool)
for res_id, conn in enumerate(connected):
if res_id == 0 or conn:
continue
# Res_id start from 1
res_name_i = atom_array.res_name[atom_array.res_id == res_id][0]
res_name_j = atom_array.res_name[atom_array.res_id == res_id + 1][0]
warnings.warn(
f"No C-N or O3'-P bond between residue {res_name_i}({res_id}) and residue {res_name_j}({res_id+1}). \n"
f"all leaving atoms will be removed for both residues."
)
for idx, res_name in zip([res_id, res_id + 1], [res_name_i, res_name_j]):
staying_atoms = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=False, keep_hydrogens=False
).atom_name
if idx == 1 and ccd.get_mol_type(res_name) in ("dna", "rna"):
staying_atoms = np.append(staying_atoms, ["OP3"])
if idx == atom_array.res_id[-1] and ccd.get_mol_type(res_name) == "protein":
staying_atoms = np.append(staying_atoms, ["OXT"])
leaving_atoms |= (atom_array.res_id == idx) & (
~np.isin(atom_array.atom_name, staying_atoms)
)
return atom_array[~leaving_atoms]
def find_range_by_index(starts: np.ndarray, atom_index: int) -> tuple[int, int]:
"""
Find the residue range of an atom index
Args:
starts (np.ndarray): Residue starts or Chain starts with exclusive stop.
atom_index (int): Atom index.
Returns:
tuple[int, int]: range (start, stop).
"""
for start, stop in zip(starts[:-1], starts[1:]):
if start <= atom_index < stop:
return start, stop
raise ValueError(f"atom_index {atom_index} not found in starts {starts}")
def remove_leaving_atoms(atom_array: AtomArray, bond_count: dict) -> AtomArray:
"""
Remove leaving atoms based on ccd info
Args:
atom_array (AtomArray): Biotite Atom array.
bond_count (dict): atom index -> Bond count.
Returns:
AtomArray: Biotite Atom array with leaving atoms removed.
"""
remove_indices = []
res_starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True)
for centre_idx, b_count in bond_count.items():
res_name = atom_array.res_name[centre_idx]
centre_name = atom_array.atom_name[centre_idx]
comp = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=True, keep_hydrogens=False
)
if comp is None:
continue
leaving_groups = comp.central_to_leaving_groups.get(centre_name)
if leaving_groups is None:
continue
if b_count > len(leaving_groups):
warnings.warn(
f"centre atom {centre_name=} {res_name=} {centre_idx=} has {b_count} inter residue bonds, greater than number of leaving groups:{leaving_groups}, remove all leaving atoms.\n"
f"atom info: {atom_array[centre_idx]=}"
)
remove_groups = leaving_groups
else:
remove_groups = random.sample(leaving_groups, b_count)
start, stop = find_range_by_index(res_starts, centre_idx)
# Find leaving atom indices
for group in remove_groups:
for atom_name in group:
leaving_idx = np.where(atom_array.atom_name[start:stop] == atom_name)[0]
if len(leaving_idx) == 0:
logging.info(f"{atom_name=} not found in residue {res_name}, ")
continue
remove_indices.append(leaving_idx[0] + start)
if not remove_indices:
return atom_array
keep_mask = np.ones(len(atom_array), dtype=bool)
keep_mask[remove_indices] = False
return atom_array[keep_mask]
def _add_bonds_to_terminal_residues(atom_array: AtomArray) -> AtomArray:
"""
Add bonds to terminal residues (eg: ACE, NME)
Args:
atom_array (AtomArray): Biotite AtomArray
Returns:
AtomArray: Biotite AtomArray with non-standard polymer bonds
"""
if atom_array.res_name[0] == "ACE":
term_res_idx = atom_array.res_id[0]
next_res_idx = term_res_idx + 1
term_atom_idx = np.where(
(atom_array.res_id == term_res_idx) & (atom_array.atom_name == "C")
)[0]
next_atom_idx = np.where(
(atom_array.res_id == next_res_idx) & (atom_array.atom_name == "N")
)[0]
if len(term_atom_idx) > 0 and len(next_atom_idx) > 0:
atom_array.bonds.add_bond(term_atom_idx[0], next_atom_idx[0], 1)
if atom_array.res_name[-1] == "NME":
term_res_idx = atom_array.res_id[-1]
prev_res_idx = term_res_idx - 1
term_atom_idx = np.where(
(atom_array.res_id == term_res_idx) & (atom_array.atom_name == "N")
)[0]
prev_atom_idx = np.where(
(atom_array.res_id == prev_res_idx) & (atom_array.atom_name == "C")
)[0]
if len(prev_atom_idx) > 0 and len(term_atom_idx) > 0:
atom_array.bonds.add_bond(prev_atom_idx[0], term_atom_idx[0], 1)
return atom_array
def _build_polymer_atom_array(ccd_seqs: list[str]) -> tuple[AtomArray, struc.BondList]:
"""
Build polymer atom_array from ccd codes, but not remove leaving atoms
Args:
ccd_seqs: a list of ccd code in sequence, ["MET", "ALA"] or ["DA", "DT"]
Returns:
AtomArray: Biotite AtomArray of chain
BondList: Biotite BondList of polymer bonds (C-N or O3'-P)
"""
chain = struc.AtomArray(0)
for res_id, res_name in enumerate(ccd_seqs):
# Keep all leaving atoms, will remove leaving atoms later
residue = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=True, keep_hydrogens=False
)
residue.res_id[:] = res_id + 1
chain += residue
res_starts = struc.get_residue_starts(chain, add_exclusive_stop=True)
polymer_bonds = ccd._connect_inter_residue(chain, res_starts)
if chain.bonds is None:
chain.bonds = polymer_bonds
else:
chain.bonds = chain.bonds.merge(polymer_bonds)
chain = _add_bonds_to_terminal_residues(chain)
bond_count = {}
for i, j, t in polymer_bonds._bonds:
bond_count[i] = bond_count.get(i, 0) + 1
bond_count[j] = bond_count.get(j, 0) + 1
chain = remove_leaving_atoms(chain, bond_count)
chain = _remove_non_std_ccd_leaving_atoms(chain)
return chain
def build_polymer(entity_info: dict) -> dict:
"""
Build a polymer from a polymer info dict
example: {
"name": "polymer",
"sequence": "GPDSMEEVVVPEEPPKLVSALATYVQQERLCTMFLSIANKLLPLKP",
"count": 1
}
Args:
item (dict): polymer info dict
Returns:
dict: {"atom_array": biotite_AtomArray_object}
"""
poly_type, info = list(entity_info.items())[0]
if poly_type == "proteinChain":
ccd_seqs = [PROTEIN_1to3[x] for x in info["sequence"]]
if modifications := info.get("modifications"):
for m in modifications:
index = m["ptmPosition"] - 1
mtype = m["ptmType"]
if mtype.startswith("CCD_"):
ccd_seqs[index] = mtype[4:]
else:
raise ValueError(f"unknown modification type: {mtype}")
if glycans := info.get("glycans"):
logging.warning(f"glycans not supported: {glycans}")
chain_array = _build_polymer_atom_array(ccd_seqs)
elif poly_type in ("dnaSequence", "rnaSequence"):
map_1to3 = DNA_1to3 if poly_type == "dnaSequence" else RNA_1to3
ccd_seqs = [map_1to3[x] for x in info["sequence"]]
if modifications := info.get("modifications"):
for m in modifications:
index = m["basePosition"] - 1
mtype = m["modificationType"]
if mtype.startswith("CCD_"):
ccd_seqs[index] = mtype[4:]
else:
raise ValueError(f"unknown modification type: {mtype}")
chain_array = _build_polymer_atom_array(ccd_seqs)
else:
raise ValueError(
"polymer type must be proteinChain, dnaSequence or rnaSequence"
)
chain_array = add_reference_features(chain_array)
return {"atom_array": chain_array}
def rdkit_mol_to_atom_array(mol: Chem.Mol, removeHs: bool = True) -> AtomArray:
"""
Convert rdkit mol to biotite AtomArray
Args:
mol (Chem.Mol): rdkit mol
removeHs (bool): whether to remove hydrogens in atom_array
Returns:
AtomArray: biotite AtomArray
"""
atom_count = mol.GetNumAtoms()
atom_array = AtomArray(atom_count)
atom_array.hetero[:] = True
atom_array.res_name[:] = "UNL"
atom_array.add_annotation("charge", int)
conf = mol.GetConformer()
coord = conf.GetPositions()
element_count = Counter()
for i, atom in enumerate(mol.GetAtoms()):
element = atom.GetSymbol().upper()
element_count[element] += 1
atom_name = f"{element}{element_count[element]}"
atom.SetProp("name", atom_name)
atom_array.atom_name[i] = atom_name
atom_array.element[i] = element
atom_array.charge[i] = atom.GetFormalCharge()
atom_array.coord[i, :] = coord[i, :]
bonds = []
for bond in mol.GetBonds():
bonds.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
atom_array.bonds = struc.BondList(atom_count, np.array(bonds))
if removeHs:
atom_array = atom_array[atom_array.element != "H"]
return atom_array
def rdkit_mol_to_atom_info(mol: Chem.Mol) -> dict[str, Any]:
"""
Convert RDKit Mol to atom_info dict.
Args:
mol (Chem.Mol): rdkit mol
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
atom_info = {}
atom_map_to_atom_name = {}
atom_idx_to_atom_name = {}
element_count = Counter()
for atom in mol.GetAtoms():
element = atom.GetSymbol().upper()
element_count[element] += 1
atom_name = f"{element}{element_count[element]}"
atom.SetProp("name", atom_name)
if atom.GetAtomMapNum() != 0:
atom_map_to_atom_name[atom.GetAtomMapNum()] = atom_name
atom_idx_to_atom_name[atom.GetIdx()] = atom_name
if atom_map_to_atom_name:
# Atom map for input SMILES
atom_info["atom_map_to_atom_name"] = atom_map_to_atom_name
else:
# Atom index for input file
atom_info["atom_map_to_atom_name"] = atom_idx_to_atom_name
# Atom_array without hydrogens
atom_info["atom_array"] = rdkit_mol_to_atom_array(mol, removeHs=True)
return atom_info
def lig_file_to_atom_info(lig_file_path: str) -> dict[str, Any]:
"""
Convert ligand file to biotite AtomArray.
Args:
lig_file_path (str): ligand file path with one of the following suffixes: [mol, mol2, sdf, pdb]
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
if lig_file_path.endswith(".mol"):
mol = Chem.MolFromMolFile(lig_file_path)
elif lig_file_path.endswith(".sdf"):
suppl = Chem.SDMolSupplier(lig_file_path)
mol = next(suppl)
elif lig_file_path.endswith(".pdb"):
mol = Chem.MolFromPDBFile(lig_file_path)
elif lig_file_path.endswith(".mol2"):
mol = Chem.MolFromMol2File(lig_file_path)
else:
raise ValueError(f"Invalid ligand file type: .{lig_file_path.split('.')[-1]}")
assert (
mol is not None
), f"Failed to retrieve molecule from file, invalid ligand file: {lig_file_path}. \
Please provide a file with one of the following suffixes: [mol, mol2, sdf, pdb]."
assert (
mol.GetConformer().Is3D()
), f"3D conformer not found in ligand file: {lig_file_path}"
atom_info = rdkit_mol_to_atom_info(mol)
return atom_info
def smiles_to_atom_info(smiles: str) -> dict:
"""
Convert smiles to atom_array, and atom_map_to_atom_name
Args:
smiles (str): smiles string, like "CCCC", or "[C:1]NC(=O)" (use num to label covalent bond atom.)
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
atom_info = {}
mol = Chem.MolFromSmiles(smiles)
mol = Chem.AddHs(mol)
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(AllChem.EmbedMolecule, mol)
try:
ret_code = future.result(timeout=90)
except concurrent.futures.TimeoutError as exc:
raise TimeoutError(
'Conformer generation timed out. \
Please change the "ligand" input format to "CCD_" or "FILE_".'
) from exc
if ret_code != 0:
# retry with random coords
ret_code = AllChem.EmbedMolecule(mol, useRandomCoords=True)
assert ret_code == 0, f"Conformer generation failed for input SMILES: {smiles}"
atom_info = rdkit_mol_to_atom_info(mol)
return atom_info
def build_ligand(entity_info: dict) -> dict:
"""
Build a ligand from a ligand entity info dict
example1: {
"ligand": {
"ligand": "CCD_ATP",
"count": 1
}
},
example2:{
"ligand": {
"ligand": "CCC=O", # smiles
"count": 1
}
},
example3:{
"ion": {
"ion": "NA",
"count": 3
}
},
Args:
entity_info (dict): ligand entity info
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"index_to_atom_name": {1: "C2"}, # only for smiles
}
"""
if info := entity_info.get("ion"):
ccd_code = [info["ion"]]
elif info := entity_info.get("ligand"):
ligand_str = info["ligand"]
if ligand_str.startswith("CCD_"):
ccd_code = ligand_str[4:].split("_")
else:
ccd_code = None
atom_info = {}
if ccd_code is not None:
atom_array = AtomArray(0)
res_ids = []
for idx, code in enumerate(ccd_code):
ccd_atom_array = ccd.get_component_atom_array(
code, keep_leaving_atoms=True, keep_hydrogens=False
)
atom_array += ccd_atom_array
res_id = idx + 1
res_ids += [res_id] * len(ccd_atom_array)
atom_info["atom_array"] = atom_array
atom_info["atom_array"].res_id[:] = res_ids
else:
if info["ligand"].startswith("FILE_"):
lig_file_path = ligand_str[5:]
atom_info = lig_file_to_atom_info(lig_file_path)
else:
atom_info = smiles_to_atom_info(ligand_str)
atom_info["atom_array"].res_id[:] = 1
atom_info["atom_array"] = add_reference_features(atom_info["atom_array"])
return atom_info
def add_entity_atom_array(single_job_dict: dict) -> dict:
"""
Add atom_array to each entity in single_job_dict
Args:
single_job_dict (dict): input job dict
Returns:
dict: deepcopy and updated job dict with atom_array
"""
single_job_dict = copy.deepcopy(single_job_dict)
sequences = single_job_dict["sequences"]
smiles_ligand_count = 0
for entity_info in sequences:
if info := entity_info.get("proteinChain"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("dnaSequence"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("rnaSequence"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("ligand"):
atom_info = build_ligand(entity_info)
if not info["ligand"].startswith("CCD_"):
smiles_ligand_count += 1
assert smiles_ligand_count <= 99, "too many smiles ligands"
# use lower case res_name (l01, l02, ..., l99) to avoid conflict with CCD code
atom_info["atom_array"].res_name[:] = f"l{smiles_ligand_count:02d}"
elif info := entity_info.get("ion"):
atom_info = build_ligand(entity_info)
else:
raise ValueError(
"entity type must be proteinChain, dnaSequence, rnaSequence, ligand or ion"
)
info.update(atom_info)
return single_job_dict