Zaixi's picture
Add large file
89c0b51
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pairing logic for multimer data pipeline."""
import collections
from typing import Any, Dict, Iterable, List, Mapping, Sequence
import numpy as np
import pandas as pd
import scipy.linalg
from protenix.openfold_local.np import residue_constants
MSA_GAP_IDX = residue_constants.restypes_with_x_and_gap.index("-")
SEQUENCE_GAP_CUTOFF = 0.5
SEQUENCE_SIMILARITY_CUTOFF = 0.9
MSA_PAD_VALUES = {
"msa_all_seq": MSA_GAP_IDX,
"msa_mask_all_seq": 1,
"deletion_matrix_all_seq": 0,
"deletion_matrix_int_all_seq": 0,
"msa": MSA_GAP_IDX,
"msa_mask": 1,
"deletion_matrix": 0,
"deletion_matrix_int": 0,
}
MSA_FEATURES = ("msa", "msa_mask", "deletion_matrix", "deletion_matrix_int")
SEQ_FEATURES = (
"residue_index",
"aatype",
"all_atom_positions",
"all_atom_mask",
"seq_mask",
"between_segment_residues",
"has_alt_locations",
"has_hetatoms",
"asym_id",
"entity_id",
"sym_id",
"entity_mask",
"deletion_mean",
"prediction_atom_mask",
"literature_positions",
"atom_indices_to_group_indices",
"rigid_group_default_frame",
)
TEMPLATE_FEATURES = (
"template_aatype",
"template_all_atom_positions",
"template_all_atom_mask",
)
CHAIN_FEATURES = ("num_alignments", "seq_length")
def create_paired_features(
chains: Iterable[Mapping[str, np.ndarray]],
) -> list[Mapping[str, np.ndarray]]:
"""Returns the original chains with paired NUM_SEQ features.
Args:
chains: A list of feature dictionaries for each chain.
Returns:
A list of feature dictionaries with sequence features including only
rows to be paired.
"""
chains = list(chains)
chain_keys = chains[0].keys()
if len(chains) < 2:
return chains
else:
updated_chains = []
paired_chains_to_paired_row_indices = pair_sequences(chains)
paired_rows = reorder_paired_rows(paired_chains_to_paired_row_indices)
for chain_num, chain in enumerate(chains):
new_chain = {k: v for k, v in chain.items() if "_all_seq" not in k}
for feature_name in chain_keys:
if feature_name.endswith("_all_seq"):
feats_padded = pad_features(chain[feature_name], feature_name)
new_chain[feature_name] = feats_padded[paired_rows[:, chain_num]]
new_chain["num_alignments_all_seq"] = np.asarray(
len(paired_rows[:, chain_num])
)
updated_chains.append(new_chain)
return updated_chains
def pad_features(feature: np.ndarray, feature_name: str) -> np.ndarray:
"""Add a 'padding' row at the end of the features list.
The padding row will be selected as a 'paired' row in the case of partial
alignment - for the chain that doesn't have paired alignment.
Args:
feature: The feature to be padded.
feature_name: The name of the feature to be padded.
Returns:
The feature with an additional padding row.
"""
assert feature.dtype != np.dtype(np.string_)
if feature_name in (
"msa_all_seq",
"msa_mask_all_seq",
"deletion_matrix_all_seq",
"deletion_matrix_int_all_seq",
):
num_res = feature.shape[1]
padding = MSA_PAD_VALUES[feature_name] * np.ones([1, num_res], feature.dtype)
elif feature_name == "msa_species_identifiers_all_seq":
padding = [b""]
else:
return feature
feats_padded = np.concatenate([feature, padding], axis=0)
return feats_padded
def _make_msa_df(chain_features: Mapping[str, np.ndarray]) -> pd.DataFrame:
"""Makes dataframe with msa features needed for msa pairing."""
chain_msa = chain_features["msa_all_seq"]
query_seq = chain_msa[0]
per_seq_similarity = np.sum(query_seq[None] == chain_msa, axis=-1) / float(
len(query_seq)
)
per_seq_gap = np.sum(chain_msa == 21, axis=-1) / float(len(query_seq))
msa_df = pd.DataFrame(
{
"msa_species_identifiers": chain_features[
"msa_species_identifiers_all_seq"
],
"msa_row": np.arange(
len(chain_features["msa_species_identifiers_all_seq"])
),
"msa_similarity": per_seq_similarity,
"gap": per_seq_gap,
}
)
return msa_df
def _create_species_dict(msa_df: pd.DataFrame) -> dict[bytes, pd.DataFrame]:
"""Creates mapping from species to msa dataframe of that species."""
species_lookup = {}
for species, species_df in msa_df.groupby("msa_species_identifiers"):
species_lookup[species] = species_df
return species_lookup
def _match_rows_by_sequence_similarity(
this_species_msa_dfs: List[pd.DataFrame],
) -> list[List[int]]:
"""Finds MSA sequence pairings across chains based on sequence similarity.
Each chain's MSA sequences are first sorted by their sequence similarity to
their respective target sequence. The sequences are then paired, starting
from the sequences most similar to their target sequence.
Args:
this_species_msa_dfs: a list of dataframes containing MSA features for
sequences for a specific species.
Returns:
A list of lists, each containing M indices corresponding to paired MSA rows,
where M is the number of chains.
"""
all_paired_msa_rows = []
num_seqs = [
len(species_df) for species_df in this_species_msa_dfs if species_df is not None
]
take_num_seqs = np.min(num_seqs)
sort_by_similarity = lambda x: x.sort_values(
"msa_similarity", axis=0, ascending=False
)
for species_df in this_species_msa_dfs:
if species_df is not None:
species_df_sorted = sort_by_similarity(species_df)
msa_rows = species_df_sorted.msa_row.iloc[:take_num_seqs].values
else:
msa_rows = [-1] * take_num_seqs # take the last 'padding' row
all_paired_msa_rows.append(msa_rows)
all_paired_msa_rows = list(np.array(all_paired_msa_rows).transpose())
return all_paired_msa_rows
def pair_sequences(
examples: List[Mapping[str, np.ndarray]],
) -> dict[int, np.ndarray]:
"""Returns indices for paired MSA sequences across chains."""
num_examples = len(examples)
all_chain_species_dict = []
common_species = set()
for chain_features in examples:
msa_df = _make_msa_df(chain_features)
species_dict = _create_species_dict(msa_df)
all_chain_species_dict.append(species_dict)
common_species.update(set(species_dict))
common_species = sorted(common_species)
common_species.remove(b"") # Remove target sequence species.
all_paired_msa_rows = [np.zeros(len(examples), int)]
all_paired_msa_rows_dict = {k: [] for k in range(num_examples)}
all_paired_msa_rows_dict[num_examples] = [np.zeros(len(examples), int)]
for species in common_species:
if not species:
continue
this_species_msa_dfs = []
species_dfs_present = 0
for species_dict in all_chain_species_dict:
if species in species_dict:
this_species_msa_dfs.append(species_dict[species])
species_dfs_present += 1
else:
this_species_msa_dfs.append(None)
# Skip species that are present in only one chain.
if species_dfs_present <= 1:
continue
if np.any(
np.array(
[
len(species_df)
for species_df in this_species_msa_dfs
if isinstance(species_df, pd.DataFrame)
]
)
> 600
):
continue
paired_msa_rows = _match_rows_by_sequence_similarity(this_species_msa_dfs)
all_paired_msa_rows.extend(paired_msa_rows)
all_paired_msa_rows_dict[species_dfs_present].extend(paired_msa_rows)
all_paired_msa_rows_dict = {
num_examples: np.array(paired_msa_rows)
for num_examples, paired_msa_rows in all_paired_msa_rows_dict.items()
}
return all_paired_msa_rows_dict
def reorder_paired_rows(all_paired_msa_rows_dict: dict[int, np.ndarray]) -> np.ndarray:
"""Creates a list of indices of paired MSA rows across chains.
Args:
all_paired_msa_rows_dict: a mapping from the number of paired chains to the
paired indices.
Returns:
a list of lists, each containing indices of paired MSA rows across chains.
The paired-index lists are ordered by:
1) the number of chains in the paired alignment, i.e, all-chain pairings
will come first.
2) e-values
"""
all_paired_msa_rows = []
for num_pairings in sorted(all_paired_msa_rows_dict, reverse=True):
paired_rows = all_paired_msa_rows_dict[num_pairings]
paired_rows_product = abs(np.array([np.prod(rows) for rows in paired_rows]))
paired_rows_sort_index = np.argsort(paired_rows_product)
all_paired_msa_rows.extend(paired_rows[paired_rows_sort_index])
return np.array(all_paired_msa_rows)
def block_diag(*arrs: np.ndarray, pad_value: float = 0.0) -> np.ndarray:
"""Like scipy.linalg.block_diag but with an optional padding value."""
ones_arrs = [np.ones_like(x) for x in arrs]
off_diag_mask = 1.0 - scipy.linalg.block_diag(*ones_arrs)
diag = scipy.linalg.block_diag(*arrs)
diag += (off_diag_mask * pad_value).astype(diag.dtype)
return diag
def _correct_post_merged_feats(
np_example: Mapping[str, np.ndarray],
np_chains_list: Sequence[Mapping[str, np.ndarray]],
pair_msa_sequences: bool,
) -> Mapping[str, np.ndarray]:
"""Adds features that need to be computed/recomputed post merging."""
np_example["seq_length"] = np.asarray(np_example["aatype"].shape[0], dtype=np.int32)
np_example["num_alignments"] = np.asarray(
np_example["msa"].shape[0], dtype=np.int32
)
if not pair_msa_sequences:
# Generate a bias that is 1 for the first row of every block in the
# block diagonal MSA - i.e. make sure the cluster stack always includes
# the query sequences for each chain (since the first row is the query
# sequence).
cluster_bias_masks = []
for chain in np_chains_list:
mask = np.zeros(chain["msa"].shape[0])
mask[0] = 1
cluster_bias_masks.append(mask)
np_example["cluster_bias_mask"] = np.concatenate(cluster_bias_masks)
# Initialize Bert mask with masked out off diagonals.
msa_masks = [np.ones(x["msa"].shape, dtype=np.float32) for x in np_chains_list]
np_example["bert_mask"] = block_diag(*msa_masks, pad_value=0)
else:
np_example["cluster_bias_mask"] = np.zeros(np_example["msa"].shape[0])
np_example["cluster_bias_mask"][0] = 1
# Initialize Bert mask with masked out off diagonals.
msa_masks = [np.ones(x["msa"].shape, dtype=np.float32) for x in np_chains_list]
msa_masks_all_seq = [
np.ones(x["msa_all_seq"].shape, dtype=np.float32) for x in np_chains_list
]
msa_mask_block_diag = block_diag(*msa_masks, pad_value=0)
msa_mask_all_seq = np.concatenate(msa_masks_all_seq, axis=1)
np_example["bert_mask"] = np.concatenate(
[msa_mask_all_seq, msa_mask_block_diag], axis=0
)
return np_example
def _pad_templates(
chains: Sequence[Mapping[str, np.ndarray]], max_templates: int
) -> Sequence[Mapping[str, np.ndarray]]:
"""For each chain pad the number of templates to a fixed size.
Args:
chains: A list of protein chains.
max_templates: Each chain will be padded to have this many templates.
Returns:
The list of chains, updated to have template features padded to
max_templates.
"""
for chain in chains:
for k, v in chain.items():
if k in TEMPLATE_FEATURES:
padding = np.zeros_like(v.shape)
padding[0] = max_templates - v.shape[0]
padding = [(0, p) for p in padding]
chain[k] = np.pad(v, padding, mode="constant")
return chains
def _merge_features_from_multiple_chains(
chains: Sequence[Mapping[str, np.ndarray]], pair_msa_sequences: bool
) -> Mapping[str, np.ndarray]:
"""Merge features from multiple chains.
Args:
chains: A list of feature dictionaries that we want to merge.
pair_msa_sequences: Whether to concatenate MSA features along the
num_res dimension (if True), or to block diagonalize them (if False).
Returns:
A feature dictionary for the merged example.
"""
merged_example = {}
for feature_name in chains[0]:
feats = [x[feature_name] for x in chains]
feature_name_split = feature_name.split("_all_seq")[0]
if feature_name_split in MSA_FEATURES:
if pair_msa_sequences or "_all_seq" in feature_name:
merged_example[feature_name] = np.concatenate(feats, axis=1)
else:
merged_example[feature_name] = block_diag(
*feats, pad_value=MSA_PAD_VALUES[feature_name]
)
elif feature_name_split in SEQ_FEATURES:
merged_example[feature_name] = np.concatenate(feats, axis=0)
elif feature_name_split in TEMPLATE_FEATURES:
merged_example[feature_name] = np.concatenate(feats, axis=1)
elif feature_name_split in CHAIN_FEATURES:
merged_example[feature_name] = np.sum(x for x in feats).astype(np.int32)
else:
merged_example[feature_name] = feats[0]
return merged_example
def _merge_homomers_dense_msa(
chains: Iterable[Mapping[str, np.ndarray]]
) -> Sequence[Mapping[str, np.ndarray]]:
"""Merge all identical chains, making the resulting MSA dense.
Args:
chains: An iterable of features for each chain.
Returns:
A list of feature dictionaries. All features with the same entity_id
will be merged - MSA features will be concatenated along the num_res
dimension - making them dense.
"""
entity_chains = collections.defaultdict(list)
for chain in chains:
entity_id = chain["entity_id"][0]
entity_chains[entity_id].append(chain)
grouped_chains = []
for entity_id in sorted(entity_chains):
chains = entity_chains[entity_id]
grouped_chains.append(chains)
chains = [
_merge_features_from_multiple_chains(chains, pair_msa_sequences=True)
for chains in grouped_chains
]
return chains
def _concatenate_paired_and_unpaired_features(
example: Mapping[str, np.ndarray]
) -> Mapping[str, np.ndarray]:
"""Merges paired and block-diagonalised features."""
features = MSA_FEATURES
for feature_name in features:
if feature_name in example:
feat = example[feature_name]
feat_all_seq = example[feature_name + "_all_seq"]
merged_feat = np.concatenate([feat_all_seq, feat], axis=0)
example[feature_name] = merged_feat
example["num_alignments"] = np.array(example["msa"].shape[0], dtype=np.int32)
return example
def merge_chain_features(
np_chains_list: List[Mapping[str, np.ndarray]],
pair_msa_sequences: bool,
max_templates: int,
) -> Mapping[str, np.ndarray]:
"""Merges features for multiple chains to single FeatureDict.
Args:
np_chains_list: List of FeatureDicts for each chain.
pair_msa_sequences: Whether to merge paired MSAs.
max_templates: The maximum number of templates to include.
Returns:
Single FeatureDict for entire complex.
"""
np_chains_list = _pad_templates(np_chains_list, max_templates=max_templates)
np_chains_list = _merge_homomers_dense_msa(np_chains_list)
# Unpaired MSA features will be always block-diagonalised; paired MSA
# features will be concatenated.
np_example = _merge_features_from_multiple_chains(
np_chains_list, pair_msa_sequences=False
)
if pair_msa_sequences:
np_example = _concatenate_paired_and_unpaired_features(np_example)
np_example = _correct_post_merged_feats(
np_example=np_example,
np_chains_list=np_chains_list,
pair_msa_sequences=pair_msa_sequences,
)
return np_example
def deduplicate_unpaired_sequences(
np_chains: List[Mapping[str, np.ndarray]]
) -> list[Mapping[str, np.ndarray]]:
"""Removes unpaired sequences which duplicate a paired sequence."""
feature_names = np_chains[0].keys()
msa_features = MSA_FEATURES
for chain in np_chains:
# Convert the msa_all_seq numpy array to a tuple for hashing.
sequence_set = set(tuple(s) for s in chain["msa_all_seq"])
keep_rows = []
# Go through unpaired MSA seqs and remove any rows that correspond to the
# sequences that are already present in the paired MSA.
for row_num, seq in enumerate(chain["msa"]):
if tuple(seq) not in sequence_set:
keep_rows.append(row_num)
for feature_name in feature_names:
if feature_name in msa_features:
chain[feature_name] = chain[feature_name][keep_rows]
chain["num_alignments"] = np.array(chain["msa"].shape[0], dtype=np.int32)
return np_chains