Spaces:
Sleeping
Sleeping
comments: true | |
description: Explore the YOLOv8 command line interface (CLI) for easy execution of detection tasks without needing a Python environment. | |
keywords: YOLOv8 CLI, command line interface, YOLOv8 commands, detection tasks, Ultralytics, model training, model prediction | |
# Command Line Interface Usage | |
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command. | |
<p align="center"> | |
<br> | |
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19" | |
title="YouTube video player" frameborder="0" | |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" | |
allowfullscreen> | |
</iframe> | |
<br> | |
<strong>Watch:</strong> Mastering Ultralytics YOLOv8: CLI | |
</p> | |
!!! Example | |
=== "Syntax" | |
Ultralytics `yolo` commands use the following syntax: | |
```bash | |
yolo TASK MODE ARGS | |
Where TASK (optional) is one of [detect, segment, classify, pose, obb] | |
MODE (required) is one of [train, val, predict, export, track, benchmark] | |
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. | |
``` | |
See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg` | |
=== "Train" | |
Train a detection model for 10 epochs with an initial learning_rate of 0.01 | |
```bash | |
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
``` | |
=== "Predict" | |
Predict a YouTube video using a pretrained segmentation model at image size 320: | |
```bash | |
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 | |
``` | |
=== "Val" | |
Val a pretrained detection model at batch-size 1 and image size 640: | |
```bash | |
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 | |
``` | |
=== "Export" | |
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) | |
```bash | |
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 | |
``` | |
=== "Special" | |
Run special commands to see version, view settings, run checks and more: | |
```bash | |
yolo help | |
yolo checks | |
yolo version | |
yolo settings | |
yolo copy-cfg | |
yolo cfg | |
``` | |
Where: | |
- `TASK` (optional) is one of `[detect, segment, classify, pose, obb]`. If it is not passed explicitly YOLOv8 will try to guess the `TASK` from the model type. | |
- `MODE` (required) is one of `[train, val, predict, export, track, benchmark]` | |
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` | |
!!! Warning "Warning" | |
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments. | |
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅ | |
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ | |
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ | |
## Train | |
Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page. | |
!!! Example "Example" | |
=== "Train" | |
Start training YOLOv8n on COCO8 for 100 epochs at image-size 640. | |
```bash | |
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640 | |
``` | |
=== "Resume" | |
Resume an interrupted training. | |
```bash | |
yolo detect train resume model=last.pt | |
``` | |
## Val | |
Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need to passed as the `model` retains its training `data` and arguments as model attributes. | |
!!! Example "Example" | |
=== "Official" | |
Validate an official YOLOv8n model. | |
```bash | |
yolo detect val model=yolov8n.pt | |
``` | |
=== "Custom" | |
Validate a custom-trained model. | |
```bash | |
yolo detect val model=path/to/best.pt | |
``` | |
## Predict | |
Use a trained YOLOv8n model to run predictions on images. | |
!!! Example "Example" | |
=== "Official" | |
Predict with an official YOLOv8n model. | |
```bash | |
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' | |
``` | |
=== "Custom" | |
Predict with a custom model. | |
```bash | |
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' | |
``` | |
## Export | |
Export a YOLOv8n model to a different format like ONNX, CoreML, etc. | |
!!! Example "Example" | |
=== "Official" | |
Export an official YOLOv8n model to ONNX format. | |
```bash | |
yolo export model=yolov8n.pt format=onnx | |
``` | |
=== "Custom" | |
Export a custom-trained model to ONNX format. | |
```bash | |
yolo export model=path/to/best.pt format=onnx | |
``` | |
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. | |
{% include "macros/export-table.md" %} | |
See full `export` details in the [Export](../modes/export.md) page. | |
## Overriding default arguments | |
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs. | |
!!! Tip "" | |
=== "Train" | |
Train a detection model for `10 epochs` with `learning_rate` of `0.01` | |
```bash | |
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
``` | |
=== "Predict" | |
Predict a YouTube video using a pretrained segmentation model at image size 320: | |
```bash | |
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 | |
``` | |
=== "Val" | |
Validate a pretrained detection model at batch-size 1 and image size 640: | |
```bash | |
yolo detect val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 | |
``` | |
## Overriding default config file | |
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, i.e. `cfg=custom.yaml`. | |
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command. | |
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example: | |
!!! Example | |
=== "CLI" | |
```bash | |
yolo copy-cfg | |
yolo cfg=default_copy.yaml imgsz=320 | |
``` | |
## FAQ | |
### How do I use the Ultralytics YOLOv8 command line interface (CLI) for model training? | |
To train a YOLOv8 model using the CLI, you can execute a simple one-line command in the terminal. For example, to train a detection model for 10 epochs with a learning rate of 0.01, you would run: | |
```bash | |
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
``` | |
This command uses the `train` mode with specific arguments. Refer to the full list of available arguments in the [Configuration Guide](cfg.md). | |
### What tasks can I perform with the Ultralytics YOLOv8 CLI? | |
The Ultralytics YOLOv8 CLI supports a variety of tasks including detection, segmentation, classification, validation, prediction, export, and tracking. For instance: | |
- **Train a Model**: Run `yolo train data=<data.yaml> model=<model.pt> epochs=<num>`. | |
- **Run Predictions**: Use `yolo predict model=<model.pt> source=<data_source> imgsz=<image_size>`. | |
- **Export a Model**: Execute `yolo export model=<model.pt> format=<export_format>`. | |
Each task can be customized with various arguments. For detailed syntax and examples, see the respective sections like [Train](#train), [Predict](#predict), and [Export](#export). | |
### How can I validate the accuracy of a trained YOLOv8 model using the CLI? | |
To validate a YOLOv8 model's accuracy, use the `val` mode. For example, to validate a pretrained detection model with a batch size of 1 and image size of 640, run: | |
```bash | |
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 | |
``` | |
This command evaluates the model on the specified dataset and provides performance metrics. For more details, refer to the [Val](#val) section. | |
### What formats can I export my YOLOv8 models to using the CLI? | |
YOLOv8 models can be exported to various formats such as ONNX, CoreML, TensorRT, and more. For instance, to export a model to ONNX format, run: | |
```bash | |
yolo export model=yolov8n.pt format=onnx | |
``` | |
For complete details, visit the [Export](../modes/export.md) page. | |
### How do I customize YOLOv8 CLI commands to override default arguments? | |
To override default arguments in YOLOv8 CLI commands, pass them as `arg=value` pairs. For example, to train a model with custom arguments, use: | |
```bash | |
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
``` | |
For a full list of available arguments and their descriptions, refer to the [Configuration Guide](cfg.md). Ensure arguments are formatted correctly, as shown in the [Overriding default arguments](#overriding-default-arguments) section. | |