Spaces:
Sleeping
Sleeping
# YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks | |
This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection` and `Pose Detection` using ONNXRuntime. | |
## Features | |
- Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection` tasks. | |
- Support `FP16` & `FP32` ONNX models. | |
- Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation. | |
- Support dynamic input shapes(`batch`, `width`, `height`). | |
## Installation | |
### 1. Install Rust | |
Please follow the Rust official installation. (https://www.rust-lang.org/tools/install) | |
### 2. Install ONNXRuntime | |
This repository use `ort` crate, which is ONNXRuntime wrapper for Rust. (https://docs.rs/ort/latest/ort/) | |
You can follow the instruction with `ort` doc or simply do this: | |
- step1: Download ONNXRuntime(https://github.com/microsoft/onnxruntime/releases) | |
- setp2: Set environment variable `PATH` for linking. | |
On ubuntu, You can do like this: | |
``` | |
vim ~/.bashrc | |
# Add the path of ONNXRUntime lib | |
export LD_LIBRARY_PATH=/home/qweasd/Documents/onnxruntime-linux-x64-gpu-1.16.3/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} | |
source ~/.bashrc | |
``` | |
### 3. \[Optional\] Install CUDA & CuDNN & TensorRT | |
- CUDA execution provider requires CUDA v11.6+. | |
- TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+. | |
## Get Started | |
### 1. Export the YOLOv8 ONNX Models | |
```bash | |
pip install -U ultralytics | |
# export onnx model with dynamic shapes | |
yolo export model=yolov8m.pt format=onnx simplify dynamic | |
yolo export model=yolov8m-cls.pt format=onnx simplify dynamic | |
yolo export model=yolov8m-pose.pt format=onnx simplify dynamic | |
yolo export model=yolov8m-seg.pt format=onnx simplify dynamic | |
# export onnx model with constant shapes | |
yolo export model=yolov8m.pt format=onnx simplify | |
yolo export model=yolov8m-cls.pt format=onnx simplify | |
yolo export model=yolov8m-pose.pt format=onnx simplify | |
yolo export model=yolov8m-seg.pt format=onnx simplify | |
``` | |
### 2. Run Inference | |
It will perform inference with the ONNX model on the source image. | |
``` | |
cargo run --release -- --model <MODEL> --source <SOURCE> | |
``` | |
Set `--cuda` to use CUDA execution provider to speed up inference. | |
``` | |
cargo run --release -- --cuda --model <MODEL> --source <SOURCE> | |
``` | |
Set `--trt` to use TensorRT execution provider, and you can set `--fp16` at the same time to use TensorRT FP16 engine. | |
``` | |
cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE> | |
``` | |
Set `--device_id` to select which device to run. When you have only one GPU, and you set `device_id` to 1 will not cause program panic, the `ort` would automatically fall back to `CPU` EP. | |
``` | |
cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE> | |
``` | |
Set `--batch` to do multi-batch-size inference. | |
If you're using `--trt`, you can also set `--batch-min` and `--batch-max` to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should exported with dynamic shapes) | |
``` | |
cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE> | |
``` | |
Set `--height` and `--width` to do dynamic image size inference. (Note that the ONNX model should exported with dynamic shapes) | |
``` | |
cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE> | |
``` | |
Set `--profile` to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.) | |
``` | |
cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE> | |
``` | |
Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti) | |
``` | |
==> 0 | |
[Model Preprocess]: 12.75788ms | |
[ORT H2D]: 237.118µs | |
[ORT Inference]: 507.895469ms | |
[ORT D2H]: 191.655µs | |
[Model Inference]: 508.34589ms | |
[Model Postprocess]: 1.061122ms | |
==> 1 | |
[Model Preprocess]: 13.658655ms | |
[ORT H2D]: 209.975µs | |
[ORT Inference]: 5.12372ms | |
[ORT D2H]: 182.389µs | |
[Model Inference]: 5.530022ms | |
[Model Postprocess]: 1.04851ms | |
==> 2 | |
[Model Preprocess]: 12.475332ms | |
[ORT H2D]: 246.127µs | |
[ORT Inference]: 5.048432ms | |
[ORT D2H]: 187.117µs | |
[Model Inference]: 5.493119ms | |
[Model Postprocess]: 1.040906ms | |
``` | |
And also: | |
`--conf`: confidence threshold \[default: 0.3\] | |
`--iou`: iou threshold in NMS \[default: 0.45\] | |
`--kconf`: confidence threshold of keypoint \[default: 0.55\] | |
`--plot`: plot inference result with random RGB color and save | |
you can check out all CLI arguments by: | |
``` | |
git clone https://github.com/ultralytics/ultralytics | |
cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust | |
cargo run --release -- --help | |
``` | |
## Examples | |
### Classification | |
Running dynamic shape ONNX model on `CPU` with image size `--height 224 --width 224`. Saving plotted image in `runs` directory. | |
``` | |
cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile | |
``` | |
You will see result like: | |
``` | |
Summary: | |
> Task: Classify (Ultralytics 8.0.217) | |
> EP: Cpu | |
> Dtype: Float32 | |
> Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic) | |
> nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45 | |
[Model Preprocess]: 16.363477ms | |
[ORT H2D]: 50.722µs | |
[ORT Inference]: 16.295808ms | |
[ORT D2H]: 8.37µs | |
[Model Inference]: 16.367046ms | |
[Model Postprocess]: 3.527µs | |
[ | |
YOLOResult { | |
Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]), | |
Bboxes: None, | |
Keypoints: None, | |
Masks: None, | |
}, | |
] | |
``` | |
 | |
### Object Detection | |
Using `CUDA` EP and dynamic image size `--height 640 --width 480` | |
``` | |
cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480 | |
``` | |
 | |
### Pose Detection | |
using `TensorRT` EP | |
``` | |
cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot | |
``` | |
 | |
### Instance Segmentation | |
using `TensorRT` EP and FP16 model `--fp16` | |
``` | |
cargo run --release -- --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot | |
``` | |
 | |