Spaces:
Running
Running
File size: 25,599 Bytes
35cbe8f 28ce5bd 35cbe8f 07d53b8 28ce5bd 7d2e24b 28ce5bd c7d597c 28ce5bd c828a61 28ce5bd c7d597c 28ce5bd 07d53b8 28ce5bd 652d352 e1cb70c 652d352 e1cb70c c828a61 e1cb70c c828a61 652d352 e1cb70c c828a61 e1cb70c 28ce5bd 652d352 c828a61 28ce5bd c7d597c 28ce5bd 652d352 e1cb70c 652d352 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd 4766c77 28ce5bd c828a61 28ce5bd c7d597c 28ce5bd c7d597c c828a61 28ce5bd 4766c77 6043033 4766c77 7d2e24b 4766c77 7d2e24b 4766c77 6043033 4766c77 6043033 4766c77 1b9e070 c828a61 b2eff28 c828a61 b2eff28 1b9e070 7d2e24b c828a61 28ce5bd b2eff28 28ce5bd c828a61 4766c77 7291007 28ce5bd 4766c77 28ce5bd c828a61 4766c77 c828a61 7d2e24b 4766c77 c828a61 4766c77 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd 7291007 28ce5bd 7291007 28ce5bd b2eff28 c828a61 b2eff28 c828a61 b2eff28 c828a61 b2eff28 c828a61 b2eff28 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 28ce5bd c828a61 b2eff28 c828a61 28ce5bd b2eff28 28ce5bd 1b9e070 e1cb70c 1b9e070 652d352 1b9e070 e1cb70c 1b9e070 28ce5bd 652d352 28ce5bd 652d352 28ce5bd b2eff28 28ce5bd 652d352 28ce5bd 652d352 c828a61 e1cb70c 28ce5bd b2eff28 652d352 b2eff28 652d352 b2eff28 652d352 b2eff28 1b9e070 35cbe8f 652d352 e1cb70c 35cbe8f e1cb70c 35cbe8f e1cb70c 1b9e070 35cbe8f 652d352 e1cb70c 35cbe8f 1b9e070 07d53b8 1b9e070 c828a61 b2eff28 c828a61 1b9e070 b2eff28 c7d597c b2eff28 c7d597c b2eff28 28ce5bd 35cbe8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# Gradio YOLOv8 Det v1.3.0
# 创建人:曾逸夫
# 创建时间:2023-12-15
# pip install gradio>=4.9.1
# python gradio_yolov8_det_v1.py
import argparse
import csv
import random
import sys
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
from gradio_imageslider import ImageSlider
import tempfile
import uuid
import numpy as np
from matplotlib import font_manager
from ultralytics import YOLO
ROOT_PATH = sys.path[0] # 项目根目录
# --------------------- 字体库 ---------------------
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径
# 宋体
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
# 新罗马字体
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
# Gradio YOLOv8 Det版本
GYD_VERSION = "Gradio YOLOv8 Det v1.2.1"
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
GYD_TITLE = """
<p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'>
<img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>
<p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p>
</p>
<p align='center'>
<a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a>
</p>
"""
GYD_SUB_TITLE = """
作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer
"""
EXAMPLES_DET = [
["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
[
"./img_examples/Millenial-at-work.jpg",
"yolov8x",
"cpu",
1280,
0.5,
0.5,
100,
"所有尺寸",
],
["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
[
"./img_examples/Millenial-at-work.jpg",
"yolov8x-seg",
"cpu",
1280,
0.5,
0.5,
100,
"所有尺寸",
],
]
EXAMPLES_CLAS = [
["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "yolov8s-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "yolov8l-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "yolov8m-cls"],
]
GYD_CSS = """#disp_image {
text-align: center; /* Horizontally center the content */
}"""
def parse_args(known=False):
parser = argparse.ArgumentParser(description=GYD_VERSION)
parser.add_argument(
"--model_name", "-mn", default="yolov8s", type=str, help="model name"
)
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--cls_imgnet_name",
"-cin",
default="./cls_name/cls_imagenet_name_zh.yaml",
type=str,
help="cls ImageNet name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument(
"--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
)
parser.add_argument(
"--inference_size", "-isz", default=640, type=int, help="model inference size"
)
parser.add_argument(
"--max_detnum", "-mdn", default=50, type=float, help="model max det num"
)
parser.add_argument(
"--slider_step", "-ss", default=0.05, type=float, help="slider step"
)
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument(
"--usr_pwd",
"-up",
nargs="+",
type=str,
default=["admin", "admin"],
help="user & password for login",
)
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
parser.add_argument(
"--server_port", "-sp", default=7860, type=int, help="server port"
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 检查网络连接
def check_online():
# 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
# 标签和边界框颜色设置
def color_set(cls_num):
color_list = []
for i in range(cls_num):
color = tuple(np.random.choice(range(256), size=3))
color_list.append(color)
return color_list
# 随机生成浅色系或者深色系
def random_color(cls_num, is_light=True):
color_list = []
for i in range(cls_num):
color = (
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
)
color_list.append(color)
return color_list
# 检测绘制
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
img_pil = ImageDraw.Draw(img)
id = 0
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(
score_l, bbox_l, cls_l, cls_index_l
):
img_pil.rectangle(
[xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2
) # 边界框
countdown_msg = f"{id}-{label} {score:.2f}"
# text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0
# left, top, left + width, top + height
# 标签尺寸 pillow 10.0.0
text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg)
# 标签背景
img_pil.rectangle(
# (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0
(
xmin,
ymin,
xmin + text_xmax - text_xmin,
ymin + text_ymax - text_ymin,
), # pillow 10.0.0
fill=color_list[cls_index],
outline=color_list[cls_index],
)
# 标签
img_pil.multiline_text(
(xmin, ymin),
countdown_msg,
fill=(0, 0, 0),
font=textFont,
align="center",
)
id += 1
return img
# 绘制多边形
def polygon_drawing(img_mask, canvas, color_seg):
# ------- RGB转BGR -------
color_seg = list(color_seg)
color_seg[0], color_seg[2] = color_seg[2], color_seg[0]
color_seg = tuple(color_seg)
# 定义多边形的顶点
pts = np.array(img_mask, dtype=np.int32)
# 多边形绘制
cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1)
# 输出分割结果
def seg_output(img_path, seg_mask_list, color_list, cls_list):
img = cv2.imread(img_path)
img_c = img.copy()
# w, h = img.shape[1], img.shape[0]
# 获取分割坐标
for seg_mask, cls_index in zip(seg_mask_list, cls_list):
img_mask = []
for i in range(len(seg_mask)):
# img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h])
img_mask.append([seg_mask[i][0], seg_mask[i][1]])
polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形
img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像
return img_mask_merge
# 目标检测和图像分割模型加载
def model_det_loading(
img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"
):
model = YOLO(yolo_model)
results = model(
source=img_path,
device=device_opt,
imgsz=infer_size,
conf=conf,
iou=iou,
max_det=max_det,
)
results = list(results)[0]
return results
# 图像分类模型加载
def model_cls_loading(img_path, yolo_model="yolov8s-cls.pt"):
model = YOLO(yolo_model)
results = model(source=img_path)
results = list(results)[0]
return results
# YOLOv8图片检测函数
def yolo_det_img(
img_path, model_name, device_opt, infer_size, conf, iou, max_det, obj_size
):
global model, model_name_tmp, device_tmp
s_obj, m_obj, l_obj = 0, 0, 0
area_obj_all = [] # 目标面积
score_det_stat = [] # 置信度统计
bbox_det_stat = [] # 边界框统计
cls_det_stat = [] # 类别数量统计
cls_index_det_stat = [] # 1
# 模型加载
predict_results = model_det_loading(
img_path,
device_opt,
conf,
iou,
infer_size,
max_det,
yolo_model=f"{model_name}.pt",
)
# 检测参数
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
cls_list = predict_results.boxes.cls.cpu().numpy().tolist()
# 颜色列表
color_list = random_color(len(model_cls_name_cp), True)
img = Image.open(img_path)
img_cp = img.copy()
# 图像分割
if model_name[-3:] == "seg":
# masks_list = predict_results.masks.xyn
masks_list = predict_results.masks.xy
img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list)
img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGB))
# 判断检测对象是否为空
if xyxy_list != []:
# ---------------- 加载字体 ----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2 : yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(
str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE
)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(
str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE
)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(
str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE
)
for i in range(len(xyxy_list)):
# ------------ 边框坐标 ------------
x0 = int(xyxy_list[i][0])
y0 = int(xyxy_list[i][1])
x1 = int(xyxy_list[i][2])
y1 = int(xyxy_list[i][3])
# ---------- 加入目标尺寸 ----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj # 目标尺寸
if obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32**2:
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif (
obj_size == obj_style[1] and area_obj > 32**2 and area_obj <= 96**2
):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif obj_size == obj_style[2] and area_obj > 96**2:
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif obj_size == "所有尺寸":
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
det_img = pil_draw(
img,
score_det_stat,
bbox_det_stat,
cls_det_stat,
cls_index_det_stat,
textFont,
color_list,
)
# -------------- 目标尺寸计算 --------------
for i in range(len(area_obj_all)):
if 0 < area_obj_all[i] <= 32**2:
s_obj = s_obj + 1
elif 32**2 < area_obj_all[i] <= 96**2:
m_obj = m_obj + 1
elif area_obj_all[i] > 96**2:
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {}
objSize_dict = {
obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)
}
# ------------ 类别统计 ------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
images = (det_img, img_cp)
images_names = ("det", "raw")
images_path = tempfile.mkdtemp()
images_paths = []
uuid_name = uuid.uuid4()
for image, image_name in zip(images, images_names):
image.save(images_path + f"/img_{uuid_name}_{image_name}.jpg")
images_paths.append(images_path + f"/img_{uuid_name}_{image_name}.jpg")
gr.Info("图片检测成功!")
return (det_img, img_cp), images_paths, objSize_dict, clsRatio_dict
else:
raise gr.Error("图片检测失败!")
# YOLOv8图片分类函数
def yolo_cls_img(img_path, model_name):
# 模型加载
predict_results = model_cls_loading(img_path, yolo_model=f"{model_name}.pt")
det_img = Image.open(img_path)
clas_ratio_list = predict_results.probs.top5conf.tolist()
clas_index_list = predict_results.probs.top5
clas_name_list = []
for i in clas_index_list:
# clas_name_list.append(predict_results.names[i])
clas_name_list.append(model_cls_imagenet_name_cp[i])
clsRatio_dict = {}
index_cls = 0
clsDet_dict = Counter(clas_name_list)
for k, v in clsDet_dict.items():
clsRatio_dict[k] = clas_ratio_list[index_cls]
index_cls += 1
return det_img, clsRatio_dict
def main(args):
gr.close_all()
global model_cls_name_cp, model_cls_imagenet_name_cp, cls_name
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
cls_imagenet_name = args.cls_imgnet_name # ImageNet类别
inference_size = args.inference_size
max_detnum = args.max_detnum
slider_step = args.slider_step
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
model_cls_imagenet_name = yaml_csv(cls_imagenet_name, "model_cls_name") # 类别名称
model_cls_name_cp = model_cls_name.copy() # 类别名称
model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200",
)
custom_css = GYD_CSS
# ------------ Gradio Blocks ------------
with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
with gr.Row():
gr.Markdown(GYD_TITLE)
with gr.Row():
gr.Markdown(GYD_SUB_TITLE)
with gr.Row():
with gr.Tabs():
with gr.TabItem("目标检测与图像分割"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
with gr.Row():
device_opt = gr.Radio(choices=["cpu", "0", "1", "2", "3"], value="cpu", label="设备")
with gr.Row():
inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
with gr.Accordion("高级设置", open=True):
with gr.Row():
inputs_size = gr.Slider(320, 1600, step=1, value=inference_size, label="推理尺寸")
max_det = gr.Slider(1, 1000, step=1, value=max_detnum, label="最大检测数")
with gr.Row():
input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
with gr.Row():
obj_size = gr.Radio(choices=["所有尺寸", "小目标", "中目标", "大目标"], value="所有尺寸", label="目标尺寸")
with gr.Row():
gr.ClearButton(inputs_img, value="清除")
det_btn_img = gr.Button(value='检测', variant="primary")
with gr.Column(scale=1):
# with gr.Row():
# outputs_img = gr.Image(type="pil", label="检测图片")
with gr.Row():
outputs_img_slider = ImageSlider(position=0.5, label="检测图片")
with gr.Row():
outputs_imgfiles = gr.Files(label="图片下载")
with gr.Row():
outputs_objSize = gr.Label(label="目标尺寸占比统计")
with gr.Row():
outputs_clsSize = gr.Label(label="类别检测占比统计")
with gr.Row():
gr.Examples(
examples=EXAMPLES_DET,
fn=yolo_det_img,
inputs=[
inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
obj_size],
# outputs=[outputs_img, outputs_objSize, outputs_clsSize],
cache_examples=False)
with gr.TabItem("图像分类"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
inputs_img_cls = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
with gr.Row():
inputs_model_cls = gr.Dropdown(choices=[
"yolov8n-cls", "yolov8s-cls", "yolov8l-cls", "yolov8m-cls", "yolov8x-cls"],
value="yolov8s-cls",
type="value",
label="模型")
with gr.Row():
gr.ClearButton(inputs_img, value="清除")
det_btn_img_cls = gr.Button(value='检测', variant="primary")
with gr.Column(scale=1):
with gr.Row():
outputs_img_cls = gr.Image(type="pil", label="检测图片")
with gr.Row():
outputs_ratio_cls = gr.Label(label="图像分类结果")
with gr.Row():
gr.Examples(
examples=EXAMPLES_CLAS,
fn=yolo_cls_img,
inputs=[inputs_img_cls, inputs_model_cls],
# outputs=[outputs_img_cls, outputs_ratio_cls],
cache_examples=False)
with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"):
gr.Markdown(
"""## Gradio YOLOv8 Det 安装与使用教程
```shell
conda create -n yolo python==3.8
conda activate yolo # 进入环境
git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git
cd gradio-yolov8-det
pip install -r ./requirements.txt -U
```
```shell
# 共享模式
python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/
# 自定义模型配置
python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml
# 自定义下拉框默认模型名称
python gradio_yolov8_det_v1.py -mn yolov8m
# 自定义类别名称
python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml (目标检测与图像分割)
python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml (图像分类)
# 自定义NMS置信度阈值
python gradio_yolov8_det_v1.py -conf 0.8
# 自定义NMS IoU阈值
python gradio_yolov8_det_v1.py -iou 0.5
# 设置推理尺寸,默认为640
python gradio_yolov8_det_v1.py -isz 320
# 设置最大检测数,默认为50
python gradio_yolov8_det_v1.py -mdn 100
# 设置滑块步长,默认为0.05
python gradio_yolov8_det_v1.py -ss 0.01
```
"""
)
det_btn_img.click(
fn=yolo_det_img,
inputs=[
inputs_img,
inputs_model,
device_opt,
inputs_size,
input_conf,
inputs_iou,
max_det,
obj_size,
],
outputs=[
outputs_img_slider,
outputs_imgfiles,
outputs_objSize,
outputs_clsSize,
],
)
det_btn_img_cls.click(
fn=yolo_cls_img,
inputs=[inputs_img_cls, inputs_model_cls],
outputs=[outputs_img_cls, outputs_ratio_cls],
)
return gyd
if __name__ == "__main__":
args = parse_args()
gyd = main(args)
is_share = args.is_share
gyd.queue().launch(
inbrowser=True, # 自动打开默认浏览器
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
) |