File size: 7,700 Bytes
119105c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872c46f
119105c
 
8913269
 
2b90a75
 
119105c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b90a75
119105c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b90a75
 
119105c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3d881
119105c
 
 
8913269
 
 
 
119105c
 
 
 
 
8913269
 
 
 
 
 
119105c
8913269
119105c
 
 
8913269
 
119105c
 
 
8913269
119105c
 
 
 
 
 
 
 
 
 
 
ef070d7
 
 
9f3d881
119105c
8913269
119105c
8913269
 
119105c
 
 
9f3d881
8913269
 
 
 
 
 
119105c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8913269
70ff35f
9f3d881
8913269
872c46f
119105c
872c46f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
"""Demo app for https://github.com/adobe-research/custom-diffusion.
The code in this repo is partly adapted from the following repository:
https://huggingface.co/spaces/hysts/LoRA-SD-training
MIT License
Copyright (c) 2022 hysts
==========================================================================================
Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
LICENSE.
==========================================================================================
"""

from __future__ import annotations
import sys
import os
import pathlib

import gradio as gr
import torch

from inference import inference_fn
# from inference_custom_diffusion import InferencePipeline
# from trainer import Trainer
# from uploader import upload

TITLE = '# Custom Diffusion + StableDiffusion Training UI'
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
'''
DETAILDESCRIPTION='''
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
<center>
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
</center>
'''

ORIGINAL_SPACE_ID = 'Ziqi/ReVersion'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = 'Settings'
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
'''

os.system("git clone https://github.com/ziqihuangg/ReVersion")
sys.path.append("ReVersion")

def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def update_output_files() -> dict:
    paths = sorted(pathlib.Path('results').glob('*.bin'))
    paths = [path.as_posix() for path in paths]  # type: ignore
    return gr.update(value=paths or None)

def find_weight_files() -> list[str]:
    curr_dir = pathlib.Path(__file__).parent
    paths = sorted(curr_dir.rglob('*.bin'))
    paths = [path for path in paths if '.lfs' not in str(path)]
    return [path.relative_to(curr_dir).as_posix() for path in paths]


def reload_custom_diffusion_weight_list() -> dict:
    return gr.update(choices=find_weight_files())


def create_inference_demo(func: inference_fn) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                model_id = gr.Dropdown(
                    choices=['experiments/painted_on'],
                    value='experiments/painted_on',
                    label='Relation',
                    visible=True)
                reload_button = gr.Button('Reload Weight List')
                prompt = gr.Textbox(
                    label='Prompt',
                    max_lines=1,
                    placeholder='Example: "cat <R> stone"')
                placeholder_string = gr.Textbox(
                    label='Placeholder String',
                    max_lines=1,
                    placeholder='Example: "<R>"')

                with gr.Accordion('Other Parameters', open=False):
                    guidance_scale = gr.Slider(label='Classifier-Free Guidance Scale',
                                               minimum=0,
                                               maximum=50,
                                               step=0.1,
                                               value=7.5)
                    num_samples = gr.Slider(label='Batch Size',
                                               minimum=0,
                                               maximum=10.,
                                               step=1,
                                               value=10)

                run_button = gr.Button('Generate')

                gr.Markdown('''
                - Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
                - After training, you can press "Reload Weight List" button to load your trained model names.
                - Increase number of steps in Other parameters for better samples qualitatively.
                ''')
            with gr.Column():
                result = gr.Image(label='Result')

        # reload_button.click(fn=reload_custom_diffusion_weight_list,
        #                     inputs=None,
        #                     outputs=weight_name)
        prompt.submit(fn=func,
                      inputs=[
                          model_id,
                          prompt,
                          placeholder_string,
                          guidance_scale
                      ],
                      outputs=result,
                      queue=False)
        run_button.click(fn=func,
                        inputs=[
                            model_id,
                            prompt,
                            placeholder_string,
                            guidance_scale
                        ],
                         outputs=result,
                         queue=False)
    return demo


with gr.Blocks(css='style.css') as demo:
    if os.getenv('IS_SHARED_UI'):
        show_warning(SHARED_UI_WARNING)
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)
    gr.Markdown(DETAILDESCRIPTION)

    with gr.Tabs():

        with gr.TabItem('Test'):
            create_inference_demo(inference_fn)


demo.queue(default_enabled=False).launch(share=False)