ReVersion / inference.py
Ziqi's picture
update
8913269
raw
history blame
2.63 kB
from __future__ import annotations
import gc
import pathlib
import sys
import gradio as gr
import PIL.Image
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
sys.path.insert(0, './ReVersion')
# below are original
import os
# import argparse
# import torch
from PIL import Image
# from diffusers import StableDiffusionPipeline
# sys.path.insert(0, './ReVersion')
from templates.templates import inference_templates
import math
"""
Inference script for generating batch results
"""
def make_image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def inference_fn(
model_id,
prompt,
placeholder_string,
num_samples,
guidance_scale
):
# create inference pipeline
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to("cuda")
# make directory to save images
image_root_folder = os.path.join(model_id, 'inference')
os.makedirs(image_root_folder, exist_ok = True)
if prompt is None and args.template_name is None:
raise ValueError("please input a single prompt through'--prompt' or select a batch of prompts using '--template_name'.")
# single text prompt
if prompt is not None:
prompt_list = [prompt]
else:
prompt_list = []
if args.template_name is not None:
# read the selected text prompts for generation
prompt_list.extend(inference_templates[args.template_name])
for prompt in prompt_list:
# insert relation prompt <R>
prompt = prompt.lower().replace("<r>", "<R>").format(placeholder_string)
# make sub-folder
image_folder = os.path.join(image_root_folder, prompt, 'samples')
os.makedirs(image_folder, exist_ok = True)
# batch generation
images = pipe(prompt, num_inference_steps=50, guidance_scale=guidance_scale, num_images_per_prompt=num_samples).images
# save generated images
for idx, image in enumerate(images):
image_name = f"{str(idx).zfill(4)}.png"
image_path = os.path.join(image_folder, image_name)
image.save(image_path)
# save a grid of images
image_grid = make_image_grid(images, rows=2, cols=math.ceil(num_samples/2))
image_grid_path = os.path.join(image_root_folder, prompt, f'{prompt}.png')
return image_grid
if __name__ == "__main__":
main()