File size: 6,883 Bytes
cc1bad4
 
3392a2f
cc1bad4
 
 
 
 
 
8deac30
56588b0
9e72422
04dd2d0
cc1bad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768647a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1bad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b3cbf2
 
 
 
 
 
 
cc1bad4
 
 
7b3cbf2
 
 
 
 
 
 
 
50abadb
 
0f71bf1
7b3cbf2
 
 
41db4ae
f24fcd0
23b0da1
 
50abadb
c3cf49f
cc1bad4
 
 
 
 
0153e63
 
 
04dd2d0
 
 
768647a
23b0da1
71c9ddf
cc1bad4
 
 
 
 
 
 
 
 
 
 
 
 
0b400c4
 
 
 
 
cc1bad4
2ac0b62
cc1bad4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment

# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# st.title("Hot Dog? Or Not?")

# file_name = st.file_uploader("Upload a hot dog candidate image")

# if file_name is not None:
#     col1, col2 = st.columns(2)

#     image = Image.open(file_name)
#     col1.image(image, use_column_width=True)
#     predictions = pipeline(image)

#     col2.header("Probabilities")
#     for p in predictions:
#         col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")

def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
    assert os.path.exists(audio_file)

    file_extension = os.path.splitext(audio_file)[1].lower()

    if file_extension == ".mp3":
        data, origin_sr = librosa.load(audio_file, sr=None)
    elif file_extension in [".wav", ".flac"]:
        data, origin_sr = soundfile.read(audio_file)
    else:
        raise Exception("unsupported file:" + file_extension)

    # channel check
    if len(data.shape) == 2:
        left_channel = data[:, 0]
        if verbose:
            print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
        data = left_channel

    # sample rate check
    if origin_sr != def_sr:
        data = resampy.resample(data, origin_sr, def_sr)
        if verbose:
            print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")

    sr = def_sr
    audio_length_second = 1.0 * len(data) / sr
    # if verbose:
    #     print("input length :%d second" % audio_length_second)

    if aim_second is not None:
        signal = data
        assert len(signal) > 0
        current_second = len(signal) / sr
        if current_second < aim_second:
            repeat_count = int(aim_second / current_second) + 1
            signal = np.repeat(signal, repeat_count)
        data = signal[0:sr * aim_second]

    return data, sr, audio_length_second

    
def my_read_file(audio_path, max_second):
    signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
    if audio_length_second > max_second:
        signal = signal[0:default_sr * max_second]
        audio_length_second = max_second

    return signal, sr, audio_length_second

def create_default_value():
    if "def_value" not in st.session_state:
        def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
        def_val_str = "".join([str(i) for i in def_val_npy])
        st.session_state.def_value = def_val_str

# Main web app
def main():
    create_default_value()

    # st.title("MDS07")
    # st.write("https://github.com/wavmark/wavmark")
    markdown_text = """
    # MDS07
    [AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI. 
    You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
    
    This page is for demonstration usage and only process **the first minute** of the audio. 
    If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
    """

    # 使用st.markdown渲染Markdown文本
    st.markdown(markdown_text)

    audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)

    if audio_file:
        # 保存文件到本地:
        # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        # st.markdown(tmp_input_audio_file)
        # with open(tmp_input_audio_file, "wb") as f:
        #     f.write(audio_file.getbuffer())
        # st.audio(tmp_input_audio_file, format="mp3/wav")

        # Save file to local storage
        tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        with open(tmp_input_audio_file, "wb") as f:
            f.write(audio_file.getbuffer())

        # Convert MP3 to WAV using pydub
        mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
        wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
        mp3_audio.export(wav_output_file, format="wav")

        # Load the WAV file using torchaudio
        wav, sample_rate = torchaudio.load(wav_output_file)
        st.markdown("Before unsquuezewav")
        st.markdown(wav)
        wav= wav.unsqueeze(0)

        # Play the audio file (WAV format)
        st.audio(wav_output_file, format="audio/wav")
        
        # wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
        st.markdown("SR")
        st.markdown(sample_rate)
        st.markdown("after unsqueeze wav")
        st.markdown(wav)
        # 展示文件到页面上
        # st.audio(tmp_input_audio_file, format="audio/wav")

        action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])

        if action == "Add Watermark":
            watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
            add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
            if add_watermark_button:  # 点击按钮后执行的
                if audio_file and watermark_text:
                    with st.spinner("Adding Watermark..."):
                        wav = my_read_file(wav,max_second_encode)
                        watermark = model.get_watermark(wav, default_sr)
                        # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
#                         st.write("Watermarked Audio:")
#                         print("watermarked_audio:", watermarked_audio)
#                         st.audio(watermarked_audio, format="audio/wav")
#                         st.write("Time Cost: %d seconds" % encode_time_cost)

#                         # st.button("Add Watermark", disabled=False)
#         elif action == "Decode Watermark":
#             if st.button("Decode"):
#                 with st.spinner("Decoding..."):
#                     decode_watermark(tmp_input_audio_file)


if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # model = wavmark.load_model().to(device)
    model = AudioSeal.load_generator("audioseal_wm_16bits")
    main()

    # audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"

    # decoded_watermark, decode_cost = decode_watermark(audio_path)
    # print(decoded_watermark)