File size: 10,562 Bytes
cc1bad4 3392a2f cc1bad4 8deac30 56588b0 9e72422 b98996a d7205d9 02214f9 04dd2d0 cc1bad4 597e146 92f70e9 597e146 768647a 597e146 768647a 597e146 768647a cc1bad4 782ddf5 cc1bad4 7b3cbf2 782ddf5 7b3cbf2 cc1bad4 0bd8df8 1b40679 7b3cbf2 1b40679 3d5f799 61b12c9 782ddf5 7b3cbf2 e3b77c6 55aeba1 e3b77c6 77e0672 b111dcd 9f50e7b c57016e 9f50e7b 97af788 e3b77c6 55aeba1 7b3cbf2 7248e7e 41db4ae f24fcd0 23b0da1 e3b77c6 c3cf49f cc1bad4 0153e63 fb9840d 0153e63 04dd2d0 597e146 651d68e d7fb4cd dc23438 98a0325 a840685 98a0325 24747eb 4ceb548 0466670 a840685 933f493 a840685 d7fb4cd 6213c17 7217d9b a840685 a61e3ce d7fb4cd 09fe599 cc1bad4 a840685 cc1bad4 0b400c4 cc1bad4 2ac0b62 cc1bad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
# import numpy
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# st.title("Hot Dog? Or Not?")
# file_name = st.file_uploader("Upload a hot dog candidate image")
# if file_name is not None:
# col1, col2 = st.columns(2)
# image = Image.open(file_name)
# col1.image(image, use_column_width=True)
# predictions = pipeline(image)
# col2.header("Probabilities")
# for p in predictions:
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
# def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
# assert os.path.exists(audio_file)
# st.markdown(os.path.exists(audio_file))
# file_extension = os.path.splitext(audio_file)[1].lower()
# st.markdown(file_extension)
# if file_extension == ".mp3":
# data, origin_sr = librosa.load(audio_file, sr=None)
# elif file_extension in [".wav", ".flac"]:
# data, origin_sr = soundfile.read(audio_file)
# else:
# raise Exception("unsupported file:" + file_extension)
# # channel check
# if len(data.shape) == 2:
# left_channel = data[:, 0]
# if verbose:
# print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
# data = left_channel
# # sample rate check
# if origin_sr != def_sr:
# data = resampy.resample(data, origin_sr, def_sr)
# if verbose:
# print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")
# sr = def_sr
# audio_length_second = 1.0 * len(data) / sr
# # if verbose:
# # print("input length :%d second" % audio_length_second)
# if aim_second is not None:
# signal = data
# assert len(signal) > 0
# current_second = len(signal) / sr
# if current_second < aim_second:
# repeat_count = int(aim_second / current_second) + 1
# signal = np.repeat(signal, repeat_count)
# data = signal[0:sr * aim_second]
# return data, sr, audio_length_second
# def my_read_file(audio_path, max_second):
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
# if audio_length_second > max_second:
# signal = signal[0:default_sr * max_second]
# audio_length_second = max_second
# return signal, sr, audio_length_second
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def download_sample_audio():
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
with open("test.wav", "wb") as f:
resp = urllib.request.urlopen(url)
f.write(resp.read())
wav, sample_rate = torchaudio.load("test.wav")
return wav, sample_rate
# Main web app
def main():
create_default_value()
# st.title("MDS07")
# st.write("https://github.com/wavmark/wavmark")
markdown_text = """
# MDS07
[AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI.
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
This page is for demonstration usage and only process **the first minute** of the audio.
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
"""
# 使用st.markdown渲染Markdown文本
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
if audio_file:
# 保存文件到本地:
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
# st.markdown(tmp_input_audio_file)
# with open(tmp_input_audio_file, "wb") as f:
# f.write(audio_file.getbuffer())
# st.audio(tmp_input_audio_file, format="mp3/wav")
# Save file to local storage
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
st.markdown(file_extension)
if file_extension in [".wav", ".flac"]:
with open("test.wav", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.wav", format="audio/wav")
elif file_extension == ".mp3":
with open("test.mp3", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.mp3", format="audio/mpeg")
# # Convert MP3 to WAV using pydub
# mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
# wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
# mp3_audio.export(wav_output_file, format="wav")
# Load the WAV file using torchaudio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
st.markdown("Before unsquueze wav")
st.markdown(wav)
#Unsqueeze for line 176
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
wav3, sample_rate = librosa.load("test.mp3")
st.markdown(wav3)
#RuntimeError: Could not infer dtype of numpy.float32
#wav = torch.tensor(wav3).float() / 32768.0
#RuntimeError: Numpy is not available
wav = torch.from_numpy(wav3) #/32768.0
wav = audio.unsqueeze(0).unsqueeze(0)
st.markdown("Before unsqueeze mp3")
st.markdown(wav)
# #Unsqueeze for line 176
# wav= wav.unsqueeze(0)
# #2nd way
# # Convert the tensor to a byte-like object in WAV format
# with io.BytesIO() as buffer:
# # Save the audio to the buffer using torchaudio
# torchaudio.save(buffer, wav, default_sr, format="wav")
# # Get the byte data from the buffer
# wav = buffer.getvalue()
# # Play the audio file (WAV format)
# st.audio(wav, format="audio/wav")
# wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
st.markdown("SR")
st.markdown(sample_rate)
st.markdown("after unsqueeze wav or mp3")
st.markdown(wav)
# 展示文件到页面上
# st.audio(tmp_input_audio_file, format="audio/wav")
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
if action == "Add Watermark":
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button: # 点击按钮后执行的
if audio_file and watermark_text:
with st.spinner("Adding Watermark..."):
#wav = my_read_file(wav,max_second_encode)
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
print(watermarked_audio.squeeze())
squeeze = watermarked_audio.squeeze(1)
shape = squeeze.size()
#st.markdown(shape)
#st.markdown(squeeze)
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
st.audio("output.wav", format="audio/wav")
# st.download_button(
# label="Download Watermarked audio",
# data="output.wav",
# file_name="output.wav",
# mime="audio/wav",
# )
#2nd Attempt
# watermarked_audio = model(wav, sample_rate=default_sr, alpha=1)
# print(watermarked_audio.size())
# size = watermarked_audio.size()
# st.markdown(size)
# print(watermarked_audio.squeeze())
# squeeze = watermarked_audio.squeeze(1)
# shape = squeeze.size()
# st.markdown(shape)
# st.markdown(squeeze)
# # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
# st.write("Watermarked Audio:")
# st.markdown(watermarked_audio)
# print("watermarked_audio:", watermarked_audio)
# watermarked_audio = torchaudio.save("output.wav", squeeze, default_sr)
# st.audio(watermarked_audio, format="audio/wav")
#st.write("Time Cost: %d seconds" % encode_time_cost)
# # st.button("Add Watermark", disabled=False)
# elif action == "Decode Watermark":
# if st.button("Decode"):
# with st.spinner("Decoding..."):
# decode_watermark(tmp_input_audio_file)
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# model = wavmark.load_model().to(device)
model = AudioSeal.load_generator("audioseal_wm_16bits")
main()
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
# decoded_watermark, decode_cost = decode_watermark(audio_path)
# print(decoded_watermark) |