import time | |
import streamlit as st | |
# from transformers import pipeline | |
import os | |
import torch | |
import datetime | |
import numpy as np | |
import soundfile | |
from wavmark.utils import file_reader | |
from audioseal import AudioSeal | |
import torchaudio | |
from pydub import AudioSegment | |
import io | |
import librosa | |
import ffmpeg | |
#from torchaudio.io import CodecConfig | |
# import numpy | |
# def my_read_file(audio_path, max_second): | |
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr) | |
# if audio_length_second > max_second: | |
# signal = signal[0:default_sr * max_second] | |
# audio_length_second = max_second | |
# return signal, sr, audio_length_second | |
def create_default_value(): | |
if "def_value" not in st.session_state: | |
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) | |
def_val_str = "".join([str(i) for i in def_val_npy]) | |
st.session_state.def_value = def_val_str | |
def download_sample_audio(): | |
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav" | |
with open("test.wav", "wb") as f: | |
resp = urllib.request.urlopen(url) | |
f.write(resp.read()) | |
wav, sample_rate = torchaudio.load("test.wav") | |
return wav, sample_rate | |
# Main web app | |
def main(): | |
create_default_value() | |
# st.title("MDS07 Demo Presentation") | |
# st.write("https://github.com/ravindi-r/audioseal") | |
markdown_text = """ | |
# MDS07 Demo Presentation | |
[AudioSeal](https://github.com/ravindi-r/audioseal) is the next-generation watermarking tool driven by AI. | |
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. | |
This page is for demonstration usage. | |
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/ravindi-r/audioseal). | |
""" | |
# 使用st.markdown渲染Markdown文本 | |
st.markdown(markdown_text) | |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False) | |
try: | |
if audio_file: | |
#2nd attempt | |
# Save file to local storage | |
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) | |
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower() | |
#st.markdown(file_extension) | |
if file_extension in [".wav", ".flac"]: | |
with open("test.wav", "wb") as f: | |
f.write(audio_file.getbuffer()) | |
st.audio("test.wav", format="audio/wav") | |
elif file_extension == ".mp3": | |
with open("test.mp3", "wb") as f: | |
f.write(audio_file.getbuffer()) | |
st.audio("test.mp3", format="audio/mpeg") | |
#Load the WAV file using torchaudio | |
if file_extension in [".wav", ".flac"]: | |
wav, sample_rate = torchaudio.load("test.wav") | |
# st.markdown("Before unsquueze wav") | |
# st.markdown(wav) | |
file_extension_ori =".wav" | |
#Unsqueeze for line 176 | |
wav= wav.unsqueeze(0) | |
elif file_extension == ".mp3": | |
# Load an MP3 file | |
audio = AudioSegment.from_mp3("test.mp3") | |
# Export it as a WAV file | |
audio.export("test.wav", format="wav") | |
wav3, sample_rate = torchaudio.load("test.wav") | |
wav= wav3.unsqueeze(0) | |
file_extension_ori =".mp3" | |
file_extension =".wav" | |
#RuntimeError: Could not infer dtype of numpy.float32 | |
#wav = torch.tensor(wav3).float() / 32768.0 | |
#RuntimeError: Numpy is not available | |
# wav = torch.from_numpy(wav3) #/32768.0 | |
# wav = wav.unsqueeze(0).unsqueeze(0) | |
# st.markdown("Before unsqueeze mp3") | |
# st.markdown(wav) | |
#Unsqueeze for line 176 | |
# wav= wav.unsqueeze(0) | |
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"]) | |
if action == "Add Watermark": | |
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) | |
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") | |
if add_watermark_button: # 点击按钮后执行的 | |
#if audio_file and watermark_text: | |
if audio_file: | |
with st.spinner("Adding Watermark..."): | |
#wav = my_read_file(wav,max_second_encode) | |
#1st attempt | |
watermark = model.get_watermark(wav, default_sr) | |
watermarked_audio = wav + watermark | |
print(watermarked_audio.size()) | |
size = watermarked_audio.size() | |
#st.markdown(size) | |
print(watermarked_audio.squeeze()) | |
squeeze = watermarked_audio.squeeze(1) | |
shape = squeeze.size() | |
#st.markdown(shape) | |
#st.markdown(squeeze) | |
if file_extension_ori in [".wav", ".flac"]: | |
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16) | |
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16) | |
st.audio("output.wav", format="audio/wav") | |
with open("output.wav", "rb") as file: | |
#file.read() | |
#file.write(watermarked_wav.getbuffer()) | |
binary_data = file.read() | |
btn = st.download_button( | |
label="Download watermarked audio", | |
data=binary_data, | |
file_name="output.wav", | |
mime="audio/wav", | |
) | |
elif file_extension_ori == ".mp3": | |
torchaudio.save("output.wav", squeeze, default_sr) | |
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr) | |
audio = AudioSegment.from_wav("output.wav") | |
# Export as MP3 | |
audio.export("output.mp3", format="mp3") | |
st.audio("output.mp3", format="audio/mpeg") | |
with open("output.mp3", "rb") as file: | |
#file.write(watermarked_wav.getbuffer()) | |
binary_data = file.read() | |
st.download_button( | |
label="Download watermarked audio", | |
data=binary_data, | |
file_name="output.mp3", | |
mime="audio/mpeg", | |
) | |
elif action == "Detect Watermark": | |
detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn") | |
if detect_watermark_button: | |
with st.spinner("Detecting..."): | |
# result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5) | |
# st.markdown("Probability of audio being watermarked: ") | |
# st.markdown(result) | |
# st.markdown("This is likely a watermarked audio!") | |
# print(f"\nThis is likely a watermarked audio: {result}") | |
#Run on an unwatermarked audio | |
if file_extension in [".wav", ".flac"]: | |
wav, sample_rate = torchaudio.load("test.wav") | |
wav= wav.unsqueeze(0) | |
elif file_extension == ".mp3": | |
# Load an MP3 file | |
audio = AudioSegment.from_mp3("test.mp3") | |
# Export it as a WAV file | |
audio.export("test.wav", format="wav") | |
wav, sample_rate = torchaudio.load("test.wav") | |
wav= wav.unsqueeze(0) | |
result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5) | |
print(f"This is likely an unwatermarked audio: {result2}") | |
st.markdown("Probability of audio being watermarked: ") | |
st.markdown(result2) | |
if result2 < 0.5: | |
st.markdown("This is likely an unwatermarked audio!") | |
else: | |
st.markdown("This is likely an watermarked audio!") | |
except RuntimeError: | |
st.error("Please input audio with one channel (mono-channel)") | |
# if audio_file: | |
# # 保存文件到本地: | |
# # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) | |
# # st.markdown(tmp_input_audio_file) | |
# # with open(tmp_input_audio_file, "wb") as f: | |
# # f.write(audio_file.getbuffer()) | |
# # st.audio(tmp_input_audio_file, format="mp3/wav") | |
# #1st attempt | |
# #audio_path = " audio_file.name" | |
# # audio, sr = torchaudio.load(audio_file) | |
# # st.audio(audio_file, format="audio/mpeg") | |
# # audio= audio.unsqueeze(0) | |
# # st.markdown("SR") | |
# # st.markdown(sr) | |
# # st.markdown("after unsqueeze wav or mp3") | |
# # st.markdown(audio) | |
# #2nd attempt | |
# # Save file to local storage | |
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) | |
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower() | |
# #st.markdown(file_extension) | |
# if file_extension in [".wav", ".flac"]: | |
# with open("test.wav", "wb") as f: | |
# f.write(audio_file.getbuffer()) | |
# st.audio("test.wav", format="audio/wav") | |
# elif file_extension == ".mp3": | |
# with open("test.mp3", "wb") as f: | |
# f.write(audio_file.getbuffer()) | |
# st.audio("test.mp3", format="audio/mpeg") | |
# #Load the WAV file using torchaudio | |
# if file_extension in [".wav", ".flac"]: | |
# wav, sample_rate = torchaudio.load("test.wav") | |
# # st.markdown("Before unsquueze wav") | |
# # st.markdown(wav) | |
# file_extension_ori =".wav" | |
# #Unsqueeze for line 176 | |
# wav= wav.unsqueeze(0) | |
# elif file_extension == ".mp3": | |
# # Load an MP3 file | |
# audio = AudioSegment.from_mp3("test.mp3") | |
# # Export it as a WAV file | |
# audio.export("test.wav", format="wav") | |
# wav3, sample_rate = torchaudio.load("test.wav") | |
# wav= wav3.unsqueeze(0) | |
# file_extension_ori =".mp3" | |
# file_extension =".wav" | |
# #RuntimeError: Could not infer dtype of numpy.float32 | |
# #wav = torch.tensor(wav3).float() / 32768.0 | |
# #RuntimeError: Numpy is not available | |
# # wav = torch.from_numpy(wav3) #/32768.0 | |
# # wav = wav.unsqueeze(0).unsqueeze(0) | |
# # st.markdown("Before unsqueeze mp3") | |
# # st.markdown(wav) | |
# #Unsqueeze for line 176 | |
# # wav= wav.unsqueeze(0) | |
# action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"]) | |
# if action == "Add Watermark": | |
# #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) | |
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") | |
# if add_watermark_button: # 点击按钮后执行的 | |
# #if audio_file and watermark_text: | |
# if audio_file: | |
# with st.spinner("Adding Watermark..."): | |
# #wav = my_read_file(wav,max_second_encode) | |
# #1st attempt | |
# watermark = model.get_watermark(wav, default_sr) | |
# watermarked_audio = wav + watermark | |
# print(watermarked_audio.size()) | |
# size = watermarked_audio.size() | |
# #st.markdown(size) | |
# print(watermarked_audio.squeeze()) | |
# squeeze = watermarked_audio.squeeze(1) | |
# shape = squeeze.size() | |
# #st.markdown(shape) | |
# #st.markdown(squeeze) | |
# if file_extension_ori in [".wav", ".flac"]: | |
# torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16) | |
# watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16) | |
# st.audio("output.wav", format="audio/wav") | |
# with open("output.wav", "rb") as file: | |
# #file.read() | |
# #file.write(watermarked_wav.getbuffer()) | |
# binary_data = file.read() | |
# btn = st.download_button( | |
# label="Download watermarked audio", | |
# data=binary_data, | |
# file_name="output.wav", | |
# mime="audio/wav", | |
# ) | |
# elif file_extension_ori == ".mp3": | |
# torchaudio.save("output.wav", squeeze, default_sr) | |
# watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr) | |
# audio = AudioSegment.from_wav("output.wav") | |
# # Export as MP3 | |
# audio.export("output.mp3", format="mp3") | |
# st.audio("output.mp3", format="audio/mpeg") | |
# with open("output.mp3", "rb") as file: | |
# #file.write(watermarked_wav.getbuffer()) | |
# binary_data = file.read() | |
# st.download_button( | |
# label="Download watermarked audio", | |
# data=binary_data, | |
# file_name="output.mp3", | |
# mime="audio/mpeg", | |
# ) | |
# # except RuntimeError: | |
# # st.error("Please input audio with one channel (mono-channel)") | |
# elif action == "Detect Watermark": | |
# detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn") | |
# # if audio_file: | |
# # #1st attempt | |
# # watermark = model.get_watermark(wav, default_sr) | |
# # watermarked_audio = wav + watermark | |
# # print(watermarked_audio.size()) | |
# # size = watermarked_audio.size() | |
# # #st.markdown(size) | |
# if detect_watermark_button: | |
# with st.spinner("Detecting..."): | |
# # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5) | |
# # st.markdown("Probability of audio being watermarked: ") | |
# # st.markdown(result) | |
# # st.markdown("This is likely a watermarked audio!") | |
# # print(f"\nThis is likely a watermarked audio: {result}") | |
# #Run on an unwatermarked audio | |
# if file_extension in [".wav", ".flac"]: | |
# wav, sample_rate = torchaudio.load("test.wav") | |
# wav= wav.unsqueeze(0) | |
# elif file_extension == ".mp3": | |
# # Load an MP3 file | |
# audio = AudioSegment.from_mp3("test.mp3") | |
# # Export it as a WAV file | |
# audio.export("test.wav", format="wav") | |
# wav, sample_rate = torchaudio.load("test.wav") | |
# wav= wav.unsqueeze(0) | |
# result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5) | |
# print(f"This is likely an unwatermarked audio: {result2}") | |
# st.markdown("Probability of audio being watermarked: ") | |
# st.markdown(result2) | |
# st.markdown("This is likely an unwatermarked audio!") | |
if __name__ == "__main__": | |
default_sr = 16000 | |
max_second_encode = 60 | |
max_second_decode = 30 | |
len_start_bit = 16 | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
# model = wavmark.load_model().to(device) | |
model = AudioSeal.load_generator("audioseal_wm_16bits") | |
detector = AudioSeal.load_detector(("audioseal_detector_16bits")) | |
main() | |
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav" | |
# decoded_watermark, decode_cost = decode_watermark(audio_path) | |
# print(decoded_watermark) |