File size: 17,882 Bytes
cc1bad4 3392a2f cc1bad4 8deac30 56588b0 9e72422 b98996a d7205d9 06d6d0a 8911f9d 02214f9 04dd2d0 597e146 768647a 597e146 768647a cc1bad4 782ddf5 cc1bad4 0afe578 91186c1 cc1bad4 0afe578 91186c1 cc1bad4 195c5f1 91186c1 cc1bad4 4cf7ea6 cc1bad4 4cf7ea6 7b3cbf2 4cf7ea6 782ddf5 4cf7ea6 7b3cbf2 f0797fe 4cf7ea6 f5cd731 4cf7ea6 f0797fe 4cf7ea6 e3b77c6 4cf7ea6 eb68364 4cf7ea6 eb68364 f0797fe c57016e f0797fe 06d6d0a c25597c e3b77c6 f0797fe 256d194 7b3cbf2 4cf7ea6 cc1bad4 4cf7ea6 597e146 651d68e 9c860eb a840685 98a0325 9c860eb a840685 933f493 a840685 4cf7ea6 f3b99f7 d4253a5 9a62502 d4253a5 9a62502 80f55a4 9a62502 230f3ee 4cf7ea6 f4d1ee5 4cf7ea6 95d3f6c 4cf7ea6 47b7e28 4cf7ea6 f5cd731 47b7e28 5b1f262 de373da 5b1f262 cc1bad4 0b400c4 cc1bad4 2ac0b62 3f9039f cc1bad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
import ffmpeg
#from torchaudio.io import CodecConfig
# import numpy
# def my_read_file(audio_path, max_second):
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
# if audio_length_second > max_second:
# signal = signal[0:default_sr * max_second]
# audio_length_second = max_second
# return signal, sr, audio_length_second
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def download_sample_audio():
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
with open("test.wav", "wb") as f:
resp = urllib.request.urlopen(url)
f.write(resp.read())
wav, sample_rate = torchaudio.load("test.wav")
return wav, sample_rate
# Main web app
def main():
create_default_value()
# st.title("MDS07 Demo Presentation")
# st.write("https://github.com/ravindi-r/audioseal")
markdown_text = """
# MDS07 Demo Presentation
[AudioSeal](https://github.com/ravindi-r/audioseal) is the next-generation watermarking tool driven by AI.
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
This page is for demonstration usage.
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/ravindi-r/audioseal).
"""
# 使用st.markdown渲染Markdown文本
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
try:
if audio_file:
#2nd attempt
# Save file to local storage
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
#st.markdown(file_extension)
if file_extension in [".wav", ".flac"]:
with open("test.wav", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.wav", format="audio/wav")
elif file_extension == ".mp3":
with open("test.mp3", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.mp3", format="audio/mpeg")
#Load the WAV file using torchaudio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
# st.markdown("Before unsquueze wav")
# st.markdown(wav)
file_extension_ori =".wav"
#Unsqueeze for line 176
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav3, sample_rate = torchaudio.load("test.wav")
wav= wav3.unsqueeze(0)
file_extension_ori =".mp3"
file_extension =".wav"
#RuntimeError: Could not infer dtype of numpy.float32
#wav = torch.tensor(wav3).float() / 32768.0
#RuntimeError: Numpy is not available
# wav = torch.from_numpy(wav3) #/32768.0
# wav = wav.unsqueeze(0).unsqueeze(0)
# st.markdown("Before unsqueeze mp3")
# st.markdown(wav)
#Unsqueeze for line 176
# wav= wav.unsqueeze(0)
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
if action == "Add Watermark":
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button: # 点击按钮后执行的
#if audio_file and watermark_text:
if audio_file:
with st.spinner("Adding Watermark..."):
#wav = my_read_file(wav,max_second_encode)
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
print(watermarked_audio.squeeze())
squeeze = watermarked_audio.squeeze(1)
shape = squeeze.size()
#st.markdown(shape)
#st.markdown(squeeze)
if file_extension_ori in [".wav", ".flac"]:
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
st.audio("output.wav", format="audio/wav")
with open("output.wav", "rb") as file:
#file.read()
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
btn = st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.wav",
mime="audio/wav",
)
elif file_extension_ori == ".mp3":
torchaudio.save("output.wav", squeeze, default_sr)
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
audio = AudioSegment.from_wav("output.wav")
# Export as MP3
audio.export("output.mp3", format="mp3")
st.audio("output.mp3", format="audio/mpeg")
with open("output.mp3", "rb") as file:
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.mp3",
mime="audio/mpeg",
)
elif action == "Detect Watermark":
detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
if detect_watermark_button:
with st.spinner("Detecting..."):
# result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
# st.markdown("Probability of audio being watermarked: ")
# st.markdown(result)
# st.markdown("This is likely a watermarked audio!")
# print(f"\nThis is likely a watermarked audio: {result}")
#Run on an unwatermarked audio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
print(f"This is likely an unwatermarked audio: {result2}")
st.markdown("Probability of audio being watermarked: ")
st.markdown(result2)
if result2 < 0.5:
st.markdown("This is likely an unwatermarked audio!")
else:
st.markdown("This is likely an watermarked audio!")
except RuntimeError:
st.error("Please input audio with one channel (mono-channel)")
# if audio_file:
# # 保存文件到本地:
# # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
# # st.markdown(tmp_input_audio_file)
# # with open(tmp_input_audio_file, "wb") as f:
# # f.write(audio_file.getbuffer())
# # st.audio(tmp_input_audio_file, format="mp3/wav")
# #1st attempt
# #audio_path = " audio_file.name"
# # audio, sr = torchaudio.load(audio_file)
# # st.audio(audio_file, format="audio/mpeg")
# # audio= audio.unsqueeze(0)
# # st.markdown("SR")
# # st.markdown(sr)
# # st.markdown("after unsqueeze wav or mp3")
# # st.markdown(audio)
# #2nd attempt
# # Save file to local storage
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
# #st.markdown(file_extension)
# if file_extension in [".wav", ".flac"]:
# with open("test.wav", "wb") as f:
# f.write(audio_file.getbuffer())
# st.audio("test.wav", format="audio/wav")
# elif file_extension == ".mp3":
# with open("test.mp3", "wb") as f:
# f.write(audio_file.getbuffer())
# st.audio("test.mp3", format="audio/mpeg")
# #Load the WAV file using torchaudio
# if file_extension in [".wav", ".flac"]:
# wav, sample_rate = torchaudio.load("test.wav")
# # st.markdown("Before unsquueze wav")
# # st.markdown(wav)
# file_extension_ori =".wav"
# #Unsqueeze for line 176
# wav= wav.unsqueeze(0)
# elif file_extension == ".mp3":
# # Load an MP3 file
# audio = AudioSegment.from_mp3("test.mp3")
# # Export it as a WAV file
# audio.export("test.wav", format="wav")
# wav3, sample_rate = torchaudio.load("test.wav")
# wav= wav3.unsqueeze(0)
# file_extension_ori =".mp3"
# file_extension =".wav"
# #RuntimeError: Could not infer dtype of numpy.float32
# #wav = torch.tensor(wav3).float() / 32768.0
# #RuntimeError: Numpy is not available
# # wav = torch.from_numpy(wav3) #/32768.0
# # wav = wav.unsqueeze(0).unsqueeze(0)
# # st.markdown("Before unsqueeze mp3")
# # st.markdown(wav)
# #Unsqueeze for line 176
# # wav= wav.unsqueeze(0)
# action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
# if action == "Add Watermark":
# #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
# if add_watermark_button: # 点击按钮后执行的
# #if audio_file and watermark_text:
# if audio_file:
# with st.spinner("Adding Watermark..."):
# #wav = my_read_file(wav,max_second_encode)
# #1st attempt
# watermark = model.get_watermark(wav, default_sr)
# watermarked_audio = wav + watermark
# print(watermarked_audio.size())
# size = watermarked_audio.size()
# #st.markdown(size)
# print(watermarked_audio.squeeze())
# squeeze = watermarked_audio.squeeze(1)
# shape = squeeze.size()
# #st.markdown(shape)
# #st.markdown(squeeze)
# if file_extension_ori in [".wav", ".flac"]:
# torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
# watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
# st.audio("output.wav", format="audio/wav")
# with open("output.wav", "rb") as file:
# #file.read()
# #file.write(watermarked_wav.getbuffer())
# binary_data = file.read()
# btn = st.download_button(
# label="Download watermarked audio",
# data=binary_data,
# file_name="output.wav",
# mime="audio/wav",
# )
# elif file_extension_ori == ".mp3":
# torchaudio.save("output.wav", squeeze, default_sr)
# watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
# audio = AudioSegment.from_wav("output.wav")
# # Export as MP3
# audio.export("output.mp3", format="mp3")
# st.audio("output.mp3", format="audio/mpeg")
# with open("output.mp3", "rb") as file:
# #file.write(watermarked_wav.getbuffer())
# binary_data = file.read()
# st.download_button(
# label="Download watermarked audio",
# data=binary_data,
# file_name="output.mp3",
# mime="audio/mpeg",
# )
# # except RuntimeError:
# # st.error("Please input audio with one channel (mono-channel)")
# elif action == "Detect Watermark":
# detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
# # if audio_file:
# # #1st attempt
# # watermark = model.get_watermark(wav, default_sr)
# # watermarked_audio = wav + watermark
# # print(watermarked_audio.size())
# # size = watermarked_audio.size()
# # #st.markdown(size)
# if detect_watermark_button:
# with st.spinner("Detecting..."):
# # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
# # st.markdown("Probability of audio being watermarked: ")
# # st.markdown(result)
# # st.markdown("This is likely a watermarked audio!")
# # print(f"\nThis is likely a watermarked audio: {result}")
# #Run on an unwatermarked audio
# if file_extension in [".wav", ".flac"]:
# wav, sample_rate = torchaudio.load("test.wav")
# wav= wav.unsqueeze(0)
# elif file_extension == ".mp3":
# # Load an MP3 file
# audio = AudioSegment.from_mp3("test.mp3")
# # Export it as a WAV file
# audio.export("test.wav", format="wav")
# wav, sample_rate = torchaudio.load("test.wav")
# wav= wav.unsqueeze(0)
# result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
# print(f"This is likely an unwatermarked audio: {result2}")
# st.markdown("Probability of audio being watermarked: ")
# st.markdown(result2)
# st.markdown("This is likely an unwatermarked audio!")
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# model = wavmark.load_model().to(device)
model = AudioSeal.load_generator("audioseal_wm_16bits")
detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
main()
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
# decoded_watermark, decode_cost = decode_watermark(audio_path)
# print(decoded_watermark) |