test1 / app.py
Zw07's picture
Update app.py
c57016e verified
raw
history blame
10.6 kB
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
# import numpy
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# st.title("Hot Dog? Or Not?")
# file_name = st.file_uploader("Upload a hot dog candidate image")
# if file_name is not None:
# col1, col2 = st.columns(2)
# image = Image.open(file_name)
# col1.image(image, use_column_width=True)
# predictions = pipeline(image)
# col2.header("Probabilities")
# for p in predictions:
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
# def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
# assert os.path.exists(audio_file)
# st.markdown(os.path.exists(audio_file))
# file_extension = os.path.splitext(audio_file)[1].lower()
# st.markdown(file_extension)
# if file_extension == ".mp3":
# data, origin_sr = librosa.load(audio_file, sr=None)
# elif file_extension in [".wav", ".flac"]:
# data, origin_sr = soundfile.read(audio_file)
# else:
# raise Exception("unsupported file:" + file_extension)
# # channel check
# if len(data.shape) == 2:
# left_channel = data[:, 0]
# if verbose:
# print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
# data = left_channel
# # sample rate check
# if origin_sr != def_sr:
# data = resampy.resample(data, origin_sr, def_sr)
# if verbose:
# print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")
# sr = def_sr
# audio_length_second = 1.0 * len(data) / sr
# # if verbose:
# # print("input length :%d second" % audio_length_second)
# if aim_second is not None:
# signal = data
# assert len(signal) > 0
# current_second = len(signal) / sr
# if current_second < aim_second:
# repeat_count = int(aim_second / current_second) + 1
# signal = np.repeat(signal, repeat_count)
# data = signal[0:sr * aim_second]
# return data, sr, audio_length_second
# def my_read_file(audio_path, max_second):
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
# if audio_length_second > max_second:
# signal = signal[0:default_sr * max_second]
# audio_length_second = max_second
# return signal, sr, audio_length_second
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def download_sample_audio():
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
with open("test.wav", "wb") as f:
resp = urllib.request.urlopen(url)
f.write(resp.read())
wav, sample_rate = torchaudio.load("test.wav")
return wav, sample_rate
# Main web app
def main():
create_default_value()
# st.title("MDS07")
# st.write("https://github.com/wavmark/wavmark")
markdown_text = """
# MDS07
[AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI.
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
This page is for demonstration usage and only process **the first minute** of the audio.
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
"""
# 使用st.markdown渲染Markdown文本
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
if audio_file:
# 保存文件到本地:
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
# st.markdown(tmp_input_audio_file)
# with open(tmp_input_audio_file, "wb") as f:
# f.write(audio_file.getbuffer())
# st.audio(tmp_input_audio_file, format="mp3/wav")
# Save file to local storage
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
st.markdown(file_extension)
if file_extension in [".wav", ".flac"]:
with open("test.wav", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.wav", format="audio/wav")
elif file_extension == ".mp3":
with open("test.mp3", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.mp3", format="audio/mpeg")
# # Convert MP3 to WAV using pydub
# mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
# wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
# mp3_audio.export(wav_output_file, format="wav")
# Load the WAV file using torchaudio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
st.markdown("Before unsquueze wav")
st.markdown(wav)
#Unsqueeze for line 176
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
wav3, sample_rate = librosa.load("test.mp3")
st.markdown(wav3)
#RuntimeError: Could not infer dtype of numpy.float32
#wav = torch.tensor(wav3).float() / 32768.0
#RuntimeError: Numpy is not available
wav = torch.from_numpy(wav3) #/32768.0
wav = audio.unsqueeze(0).unsqueeze(0)
st.markdown("Before unsqueeze mp3")
st.markdown(wav)
# #Unsqueeze for line 176
# wav= wav.unsqueeze(0)
# #2nd way
# # Convert the tensor to a byte-like object in WAV format
# with io.BytesIO() as buffer:
# # Save the audio to the buffer using torchaudio
# torchaudio.save(buffer, wav, default_sr, format="wav")
# # Get the byte data from the buffer
# wav = buffer.getvalue()
# # Play the audio file (WAV format)
# st.audio(wav, format="audio/wav")
# wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
st.markdown("SR")
st.markdown(sample_rate)
st.markdown("after unsqueeze wav or mp3")
st.markdown(wav)
# 展示文件到页面上
# st.audio(tmp_input_audio_file, format="audio/wav")
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
if action == "Add Watermark":
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button: # 点击按钮后执行的
if audio_file and watermark_text:
with st.spinner("Adding Watermark..."):
#wav = my_read_file(wav,max_second_encode)
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
print(watermarked_audio.squeeze())
squeeze = watermarked_audio.squeeze(1)
shape = squeeze.size()
#st.markdown(shape)
#st.markdown(squeeze)
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
st.audio("output.wav", format="audio/wav")
# st.download_button(
# label="Download Watermarked audio",
# data="output.wav",
# file_name="output.wav",
# mime="audio/wav",
# )
#2nd Attempt
# watermarked_audio = model(wav, sample_rate=default_sr, alpha=1)
# print(watermarked_audio.size())
# size = watermarked_audio.size()
# st.markdown(size)
# print(watermarked_audio.squeeze())
# squeeze = watermarked_audio.squeeze(1)
# shape = squeeze.size()
# st.markdown(shape)
# st.markdown(squeeze)
# # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
# st.write("Watermarked Audio:")
# st.markdown(watermarked_audio)
# print("watermarked_audio:", watermarked_audio)
# watermarked_audio = torchaudio.save("output.wav", squeeze, default_sr)
# st.audio(watermarked_audio, format="audio/wav")
#st.write("Time Cost: %d seconds" % encode_time_cost)
# # st.button("Add Watermark", disabled=False)
# elif action == "Decode Watermark":
# if st.button("Decode"):
# with st.spinner("Decoding..."):
# decode_watermark(tmp_input_audio_file)
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# model = wavmark.load_model().to(device)
model = AudioSeal.load_generator("audioseal_wm_16bits")
main()
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
# decoded_watermark, decode_cost = decode_watermark(audio_path)
# print(decoded_watermark)