Zw07 commited on
Commit
1674576
·
verified ·
1 Parent(s): 5f9384d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -61
app.py CHANGED
@@ -14,67 +14,6 @@ import io
14
  import librosa
15
  # import numpy
16
 
17
- # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
18
-
19
- # st.title("Hot Dog? Or Not?")
20
-
21
- # file_name = st.file_uploader("Upload a hot dog candidate image")
22
-
23
- # if file_name is not None:
24
- # col1, col2 = st.columns(2)
25
-
26
- # image = Image.open(file_name)
27
- # col1.image(image, use_column_width=True)
28
- # predictions = pipeline(image)
29
-
30
- # col2.header("Probabilities")
31
- # for p in predictions:
32
- # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
33
-
34
- # def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
35
- # assert os.path.exists(audio_file)
36
- # st.markdown(os.path.exists(audio_file))
37
-
38
- # file_extension = os.path.splitext(audio_file)[1].lower()
39
- # st.markdown(file_extension)
40
-
41
- # if file_extension == ".mp3":
42
- # data, origin_sr = librosa.load(audio_file, sr=None)
43
- # elif file_extension in [".wav", ".flac"]:
44
- # data, origin_sr = soundfile.read(audio_file)
45
- # else:
46
- # raise Exception("unsupported file:" + file_extension)
47
-
48
- # # channel check
49
- # if len(data.shape) == 2:
50
- # left_channel = data[:, 0]
51
- # if verbose:
52
- # print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
53
- # data = left_channel
54
-
55
- # # sample rate check
56
- # if origin_sr != def_sr:
57
- # data = resampy.resample(data, origin_sr, def_sr)
58
- # if verbose:
59
- # print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")
60
-
61
- # sr = def_sr
62
- # audio_length_second = 1.0 * len(data) / sr
63
- # # if verbose:
64
- # # print("input length :%d second" % audio_length_second)
65
-
66
- # if aim_second is not None:
67
- # signal = data
68
- # assert len(signal) > 0
69
- # current_second = len(signal) / sr
70
- # if current_second < aim_second:
71
- # repeat_count = int(aim_second / current_second) + 1
72
- # signal = np.repeat(signal, repeat_count)
73
- # data = signal[0:sr * aim_second]
74
-
75
- # return data, sr, audio_length_second
76
-
77
-
78
  # def my_read_file(audio_path, max_second):
79
  # signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
80
  # if audio_length_second > max_second:
 
14
  import librosa
15
  # import numpy
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  # def my_read_file(audio_path, max_second):
18
  # signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
19
  # if audio_length_second > max_second: