File size: 11,235 Bytes
efbe6b4
686cd54
 
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92aa5ff
efbe6b4
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
 
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
686cd54
efbe6b4
 
686cd54
efbe6b4
 
686cd54
efbe6b4
 
 
 
 
c51f116
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703d114
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
703d114
efbe6b4
 
 
 
 
703d114
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686f61c
efbe6b4
15355ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import string
from random import random, sample
from utilities_language_general.rus_constants import nlp, PHRASES, BAD_USER_TARGET_WORDS
from utilities_language_general.rus_utils import get_tags, define_gender, make_inflection, check_token_bert, get_distractors_from_model_bert


class SENTENCE:
    def __init__(self, original: str, n_sentence: int, max_num_distractors):
        self.original = original
        self.n_sentence = n_sentence
        self.max_num_distractors = max_num_distractors
        self.parsed = nlp(self.original)
        self.sentence_lemma_pos = []
        self.sentence_phrases = []
        self.target_words = []
        self.text_with_masked_task = ''

    def lemmatize_sentence(self):
        for token in self.parsed:
            lemma_pos = f'{token.lemma_}_{token.pos_}'
            self.sentence_lemma_pos.append((lemma_pos, token))

    def bind_phrases(self):
        self.sentence_phrases = self.parsed

    def search_target_words_automatically(self, target_minimum: set, frequency_dict: dict = None, summary: list=None):
        for token in self.sentence_phrases:
            if isinstance(token, list):  # if token is a phrase
                original_token1 = token[1]['original_token1']
                original_token2 = token[1]['original_token2']
                original_token1_tags = get_tags(original_token1.text)[0]
                original_token2_tags = get_tags(original_token2.text)[0]
                tags = original_token1_tags | original_token2_tags
                not_ner = True if (original_token1.ent_type == 0 and original_token2.ent_type == 0) else False
                target_word = {
                    'masked_sentence': self.original.replace(f'{original_token1.text} {original_token2.text}',
                                                             '[MASK]'),
                    'sentence_number': self.n_sentence,
                    'sentence_text': self.original,
                    'original_text': f'{original_token1.text} {original_token2.text}',
                    'lemma': token[0],
                    'pos': ('phrase', [original_token1.pos_, original_token2.pos_]),
                    'gender': list({define_gender(original_token1), define_gender(original_token2)})[0],
                    'tags': tags,
                    'position_in_sentence': self.original.find(original_token1.text),
                    'not_named_entity': not_ner,
                    'frequency_in_text': 0,
                    'in_summary': self.original in summary
                }
                self.target_words.append(target_word)
            else:  # if token is just a spacy.nlp token
                if check_token_bert(token=token, current_minimum=target_minimum):
                    target_word = {
                        'masked_sentence': self.original.replace(token.text, '[MASK]'),
                        'sentence_number': self.n_sentence,
                        'sentence_text': self.original,
                        'original_text': token.text,
                        'lemma': token.lemma_,
                        'pos': ('simple', token.pos_),
                        'gender': define_gender(token.lemma_),
                        'number_children': len([child for child in token.children]),
                        'tags': get_tags(token.text)[0],
                        'position_in_sentence': self.original.find(token.text),
                        'not_named_entity': True if token.ent_type == 0 else False,
                        'frequency_in_text': frequency_dict.get(token.lemma_, 1),
                        'in_summary': self.original in summary
                    }
                    self.target_words.append(target_word)

    def search_user_target_words(self, user_target_words: set = None, frequency_dict: dict = None, summary: list=None):
        for _utw in user_target_words:
            if _utw in self.original:
                parse_utw = nlp(_utw)
                if ' ' in _utw:
                    tags = get_tags(parse_utw[0].text)[0] | get_tags(parse_utw[1].text)[0]
                    user_target_word_lemma = '_'.join([f'{token.lemma_}_{token.pos_}' for token in parse_utw])
                    user_target_word_pos = ('phrase', [token.pos_ for token in parse_utw])
                    user_target_word_tags = tags
                    not_ner = True if (parse_utw[0].ent_type == 0 and parse_utw[1].ent_type == 0) else False
                else:
                    user_target_word_lemma = f'{parse_utw[0].lemma_}_{parse_utw[0].pos_}'
                    user_target_word_pos = ('simple', parse_utw[0].pos_)
                    user_target_word_tags = get_tags(parse_utw[0].text)[0]
                    not_ner = parse_utw[0].ent_type == 0
                target_word = {
                    'masked_sentence': self.original.replace(_utw, '[MASK]'),
                    'sentence_number': self.n_sentence,
                    'sentence_text': self.original,
                    'original_text': _utw,
                    'lemma': user_target_word_lemma,
                    'pos': user_target_word_pos,
                    'gender': define_gender(parse_utw[0].text),
                    'tags': user_target_word_tags,
                    'position_in_sentence': self.original.find(_utw),
                    'not_named_entity': not_ner,
                    'frequency_in_text': frequency_dict.get(user_target_word_lemma, 1),
                    'in_summary': self.original in summary
                }
                self.target_words.append(target_word)

    def search_target_words(self, target_words_automatic_mode: bool, target_minimum,
                            user_target_words: set = None,
                            frequency_dict: dict = None, summary: list=None):
        if target_words_automatic_mode:
            self.search_target_words_automatically(target_minimum=target_minimum,
                                                   frequency_dict=frequency_dict, summary=summary)
        else:
            self.search_user_target_words(user_target_words=user_target_words,
                                          frequency_dict=frequency_dict, summary=summary)

    def filter_target_words(self, target_words_automatic_mode):
        c_position = 0
        bad_target_words = []
        for target_word in self.target_words:
            position_difference = 5 if target_words_automatic_mode else 0
            if not (target_word['position_in_sentence'] == 0
                    or abs(target_word['position_in_sentence'] - c_position) >= position_difference):
                bad_target_words.append(target_word)
        for btw in bad_target_words:
            BAD_USER_TARGET_WORDS.append(btw['original_text'])
            self.target_words.remove(btw)


class TASK:
    def __init__(self, task_data, max_num_distractors):
        self.task_data = task_data
        self.distractors = None
        self.distractors_number = 0
        self.bad_target_word = False
        self.inflected_distractors = None
        self.pos = task_data['pos']
        self.tags = task_data['tags']
        self.lemma = task_data['lemma']
        self.gender = task_data['gender']
        self.in_summary = task_data['in_summary']
        self.max_num_distractors = max_num_distractors
        self.original_text = task_data['original_text']
        self.sentence_text = task_data['sentence_text']
        self.sentence_number = task_data['sentence_number']
        self.masked_sentence = task_data['masked_sentence']
        self.frequency_in_text = task_data['frequency_in_text']
        self.position_in_sentence = task_data['position_in_sentence']
        self.text_with_masked_task = task_data['text_with_masked_task']
        self.result = ''
        self.variants = []

    def __repr__(self):
        return '\n'.join([f'{key}\t=\t{value}' for key, value in self.__dict__.items()])

    def attach_distractors_to_target_word(self, model, scaler, classifier, pos_dict, 
                                          global_distractors, distractor_minimum, level_name, max_frequency):
        pos = self.pos[0] if self.pos[0] == 'phrase' else self.pos[1]
        distractors_sentence = get_distractors_from_model_bert(model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
                                                               level_name=level_name, lemma=self.lemma, pos=pos, gender=self.gender, 
                                                               text_with_masked_task=self.masked_sentence,
                                                               global_distractors=global_distractors,
                                                               distractor_minimum=distractor_minimum,
                                                               max_num_distractors=self.max_num_distractors)
        if distractors_sentence is None or self.frequency_in_text > max_frequency:
            self.bad_target_word = True
            self.distractors = None
        else:
            self.distractors = [d[0] for i, d in enumerate(distractors_sentence) if i < 15]
            self.distractors_number = len(distractors_sentence) if distractors_sentence is not None else 0

    def inflect_distractors(self, level_name):
        inflected_distractors = []
        if self.distractors is None:
            self.bad_target_word = True
            return
        for distractor_lemma in self.distractors:
            inflected = make_inflection(text=distractor_lemma, pos=self.pos[1], tags=self.tags, level=level_name)
            if inflected is not None:
                inflected_distractors.append(inflected)
        num_distractors = min(4, self.max_num_distractors) if self.max_num_distractors >= 4 \
            else self.max_num_distractors
        if len(inflected_distractors) < num_distractors:
            self.bad_target_word = True
        else:
            self.distractors_number = num_distractors
            self.inflected_distractors = inflected_distractors

    def sample_distractors(self, num_distractors):
        if not self.bad_target_word:
            num_distractors = min(self.distractors_number, num_distractors) \
                if num_distractors >= 4 else num_distractors
            self.inflected_distractors = sample(self.inflected_distractors[:min(self.distractors_number, 10)],
                                                num_distractors)

    def compile_task(self, max_num_distractors):
        len_distractors = len(self.inflected_distractors)
        len_variants = min(len_distractors, max_num_distractors) if max_num_distractors > 4 \
            else max_num_distractors
        letters = (f'({letter})' for letter in string.ascii_lowercase[:len_variants + 1])
        try:
            distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ]
        except ValueError:
            distractors = self.inflected_distractors + [self.original_text, ]
        tmp_vars = [f'{item[0]} {item[1].replace("_", " ").lower()}'.lower()
                    for item in zip(letters, sorted(distractors, key=lambda _: random()))]
        self.variants.append((self.original_text.lower(), tmp_vars))