Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,139 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def detect_ai_text(text):
|
9 |
if not text or len(text.strip()) < 50:
|
10 |
return {"error": "文本太短,无法可靠检测"}
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
score = result[0]["score"]
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
ai_probability = score
|
21 |
-
else: # 人类撰写
|
22 |
-
ai_probability = 1 - score
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
|
|
32 |
}
|
33 |
-
|
34 |
-
def analyze_text_features(text):
|
35 |
-
# 简单文本特征分析
|
36 |
-
features = {}
|
37 |
-
features["length"] = len(text)
|
38 |
-
features["avg_word_length"] = sum(len(word) for word in text.split()) / max(1, len(text.split()))
|
39 |
-
features["unique_words_ratio"] = len(set(text.lower().split())) / max(1, len(text.split()))
|
40 |
|
41 |
-
return
|
42 |
|
43 |
# 创建Gradio界面
|
44 |
iface = gr.Interface(
|
45 |
fn=detect_ai_text,
|
46 |
inputs=gr.Textbox(lines=10, placeholder="粘贴要检测的文本..."),
|
47 |
outputs=gr.JSON(),
|
48 |
-
title="AI文本检测API",
|
49 |
-
description="
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
|
52 |
iface.launch()
|
|
|
|
1 |
+
# app.py - 文本检测多模型集成系统
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
|
7 |
+
# 加载多个检测模型
|
8 |
+
models = {
|
9 |
+
"model1": {
|
10 |
+
"name": "Xenova/distilbert-base-ai-generated-text-detection",
|
11 |
+
"detector": None,
|
12 |
+
"weight": 0.4
|
13 |
+
},
|
14 |
+
"model2": {
|
15 |
+
"name": "Hello-SimpleAI/chatgpt-detector-roberta",
|
16 |
+
"detector": None,
|
17 |
+
"weight": 0.3
|
18 |
+
},
|
19 |
+
"model3": {
|
20 |
+
"name": "roberta-base-openai-detector",
|
21 |
+
"detector": None,
|
22 |
+
"weight": 0.3
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
# 初始化模型
|
27 |
+
for key in models:
|
28 |
+
try:
|
29 |
+
models[key]["detector"] = pipeline("text-classification", model=models[key]["name"])
|
30 |
+
print(f"成功加载模型: {models[key]['name']}")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
|
33 |
+
models[key]["detector"] = None
|
34 |
+
|
35 |
+
def analyze_text_features(text):
|
36 |
+
# 文本特征分析
|
37 |
+
features = {}
|
38 |
+
features["length"] = len(text)
|
39 |
+
words = text.split()
|
40 |
+
features["word_count"] = len(words)
|
41 |
+
features["avg_word_length"] = sum(len(word) for word in words) / max(1, len(words))
|
42 |
+
features["unique_words_ratio"] = len(set(text.lower().split())) / max(1, len(words))
|
43 |
+
|
44 |
+
# 句子分析
|
45 |
+
sentences = re.split(r'[.!?]+', text)
|
46 |
+
features["sentence_count"] = len(sentences)
|
47 |
+
features["avg_sentence_length"] = sum(len(s.split()) for s in sentences) / max(1, len(sentences))
|
48 |
+
|
49 |
+
# 词汇多样性
|
50 |
+
if len(words) > 0:
|
51 |
+
features["lexical_diversity"] = len(set(words)) / len(words)
|
52 |
+
|
53 |
+
# 标点符号比例
|
54 |
+
punctuation_count = sum(1 for char in text if char in ",.!?;:\"'()[]{}")
|
55 |
+
features["punctuation_ratio"] = punctuation_count / max(1, len(text))
|
56 |
+
|
57 |
+
return features
|
58 |
|
59 |
def detect_ai_text(text):
|
60 |
if not text or len(text.strip()) < 50:
|
61 |
return {"error": "文本太短,无法可靠检测"}
|
62 |
|
63 |
+
results = {}
|
64 |
+
valid_models = 0
|
65 |
+
weighted_ai_probability = 0
|
66 |
+
|
67 |
+
# 使用每个模型进行预测
|
68 |
+
for key, model_info in models.items():
|
69 |
+
if model_info["detector"] is not None:
|
70 |
+
try:
|
71 |
+
result = model_info["detector"](text)
|
72 |
+
|
73 |
+
# 提取结果
|
74 |
+
label = result[0]["label"]
|
75 |
+
score = result[0]["score"]
|
76 |
+
|
77 |
+
# 确定AI生成概率
|
78 |
+
if "ai" in label.lower() or "chatgpt" in label.lower() or "generated" in label.lower():
|
79 |
+
ai_probability = score
|
80 |
+
else:
|
81 |
+
ai_probability = 1 - score
|
82 |
+
|
83 |
+
# 添加到结果
|
84 |
+
results[key] = {
|
85 |
+
"model_name": model_info["name"],
|
86 |
+
"ai_probability": ai_probability,
|
87 |
+
"label": label,
|
88 |
+
"score": score
|
89 |
+
}
|
90 |
+
|
91 |
+
# 累加加权概率
|
92 |
+
weighted_ai_probability += ai_probability * model_info["weight"]
|
93 |
+
valid_models += 1
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
results[key] = {
|
97 |
+
"model_name": model_info["name"],
|
98 |
+
"error": str(e)
|
99 |
+
}
|
100 |
|
101 |
+
# 计算最终加权概率
|
102 |
+
final_ai_probability = weighted_ai_probability / max(sum(m["weight"] for k, m in models.items() if m["detector"] is not None), 1)
|
|
|
103 |
|
104 |
+
# 分析文本特征
|
105 |
+
text_features = analyze_text_features(text)
|
|
|
|
|
|
|
106 |
|
107 |
+
# 确定置信度级别
|
108 |
+
if final_ai_probability > 0.7:
|
109 |
+
confidence_level = "高概率AI生成"
|
110 |
+
elif final_ai_probability < 0.3:
|
111 |
+
confidence_level = "高概率人类创作"
|
112 |
+
else:
|
113 |
+
confidence_level = "无法确定"
|
114 |
|
115 |
+
# 构建最终结果
|
116 |
+
final_result = {
|
117 |
+
"ai_probability": final_ai_probability,
|
118 |
+
"confidence_level": confidence_level,
|
119 |
+
"individual_model_results": results,
|
120 |
+
"features": text_features
|
121 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
return final_result
|
124 |
|
125 |
# 创建Gradio界面
|
126 |
iface = gr.Interface(
|
127 |
fn=detect_ai_text,
|
128 |
inputs=gr.Textbox(lines=10, placeholder="粘贴要检测的文本..."),
|
129 |
outputs=gr.JSON(),
|
130 |
+
title="增强型AI文本检测API",
|
131 |
+
description="多模型集成检测文本是否由AI生成",
|
132 |
+
examples=[
|
133 |
+
["这是一段示例文本,用于测试AI文本检测功能。请输入至少50个字符的文本以获得准确的检测结果。"]
|
134 |
+
],
|
135 |
+
allow_flagging="never"
|
136 |
)
|
137 |
|
138 |
iface.launch()
|
139 |
+
|