AI-Midterm-IDNN / idnns /information /mutual_info_estimation.py
Ashley Goluoglu
add files from pantelis/IDNN
96283ff
raw
history blame
7.44 kB
import numpy as np
from scipy.optimize import minimize
import sys
import tensorflow as tf
from idnns.networks import model as mo
import contextlib
import idnns.information.entropy_estimators as ee
@contextlib.contextmanager
def printoptions(*args, **kwargs):
original = np.get_printoptions()
np.set_printoptions(*args, **kwargs)
try:
yield
finally:
np.set_printoptions(**original)
def optimiaze_func(s, diff_mat, d, N):
diff_mat1 = (1. / (np.sqrt(2. * np.pi) * (s ** 2) ** (d / 2.))) * np.exp(-diff_mat / (2. * s ** 2))
np.fill_diagonal(diff_mat1, 0)
diff_mat2 = (1. / (N - 1)) * np.sum(diff_mat1, axis=0)
diff_mat3 = np.sum(np.log2(diff_mat2), axis=0)
return -diff_mat3
def calc_all_sigams(data, sigmas):
batchs = 128
num_of_bins = 8
# bins = np.linspace(-1, 1, num_of_bins).astype(np.float32)
# bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
# data = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
batch_points = np.rint(np.arange(0, data.shape[0] + 1, batchs)).astype(dtype=np.int32)
I_XT = []
num_of_rand = min(800, data.shape[1])
for sigma in sigmas:
# print sigma
I_XT_temp = 0
for i in range(0, len(batch_points) - 1):
new_data = data[batch_points[i]:batch_points[i + 1], :]
rand_indexs = np.random.randint(0, new_data.shape[1], num_of_rand)
new_data = new_data[:, :]
N = new_data.shape[0]
d = new_data.shape[1]
diff_mat = np.linalg.norm(((new_data[:, np.newaxis, :] - new_data)), axis=2)
# print diff_mat.shape, new_data.shape
s0 = 0.2
# DOTO -add leaveoneout validation
res = minimize(optimiaze_func, s0, args=(diff_mat, d, N), method='nelder-mead',
options={'xtol': 1e-8, 'disp': False, 'maxiter': 6})
eta = res.x
diff_mat0 = - 0.5 * (diff_mat / (sigma ** 2 + eta ** 2))
diff_mat1 = np.sum(np.exp(diff_mat0), axis=0)
diff_mat2 = -(1.0 / N) * np.sum(np.log2((1.0 / N) * diff_mat1))
I_XT_temp += diff_mat2 - d * np.log2((sigma ** 2) / (eta ** 2 + sigma ** 2))
# print diff_mat2 - d*np.log2((sigma**2)/(eta**2+sigma**2))
I_XT_temp /= len(batch_points)
I_XT.append(I_XT_temp)
sys.stdout.flush()
return I_XT
def estimate_IY_by_network(data, labels, from_layer=0):
if len(data.shape) > 2:
input_size = data.shape[1:]
else:
input_size = data.shape[1]
p_y_given_t_i = data
acc_all = [0]
if from_layer < 5:
acc_all = []
g1 = tf.Graph() ## This is one graph
with g1.as_default():
# For each epoch and for each layer we calculate the best decoder - we train a 2 lyaer network
cov_net = 4
model = mo.Model(input_size, [400, 100, 50], labels.shape[1], 0.0001, '', cov_net=cov_net,
from_layer=from_layer)
if from_layer < 5:
optimizer = model.optimize
init = tf.global_variables_initializer()
num_of_ephocs = 50
batch_size = 51
batch_points = np.rint(np.arange(0, data.shape[0] + 1, batch_size)).astype(dtype=np.int32)
if data.shape[0] not in batch_points:
batch_points = np.append(batch_points, [data.shape[0]])
with tf.Session(graph=g1) as sess:
sess.run(init)
if from_layer < 5:
for j in range(0, num_of_ephocs):
for i in range(0, len(batch_points) - 1):
batch_xs = data[batch_points[i]:batch_points[i + 1], :]
batch_ys = labels[batch_points[i]:batch_points[i + 1], :]
feed_dict = {model.x: batch_xs, model.labels: batch_ys}
if cov_net == 1:
feed_dict[model.drouput] = 0.5
optimizer.run(feed_dict)
p_y_given_t_i = []
batch_size = 256
batch_points = np.rint(np.arange(0, data.shape[0] + 1, batch_size)).astype(dtype=np.int32)
if data.shape[0] not in batch_points:
batch_points = np.append(batch_points, [data.shape[0]])
for i in range(0, len(batch_points) - 1):
batch_xs = data[batch_points[i]:batch_points[i + 1], :]
batch_ys = labels[batch_points[i]:batch_points[i + 1], :]
feed_dict = {model.x: batch_xs, model.labels: batch_ys}
if cov_net == 1:
feed_dict[model.drouput] = 1
p_y_given_t_i_local, acc = sess.run([model.prediction, model.accuracy],
feed_dict=feed_dict)
acc_all.append(acc)
if i == 0:
p_y_given_t_i = np.array(p_y_given_t_i_local)
else:
p_y_given_t_i = np.concatenate((p_y_given_t_i, np.array(p_y_given_t_i_local)), axis=0)
# print ("The accuracy of layer number - {} - {}".format(from_layer, np.mean(acc_all)))
max_indx = len(p_y_given_t_i)
labels_cut = labels[:max_indx, :]
true_label_index = np.argmax(labels_cut, 1)
s = np.log2(p_y_given_t_i[np.arange(len(p_y_given_t_i)), true_label_index])
I_TY = np.mean(s[np.isfinite(s)])
PYs = np.sum(labels_cut, axis=0) / labels_cut.shape[0]
Hy = np.nansum(-PYs * np.log2(PYs + np.spacing(1)))
I_TY = Hy + I_TY
I_TY = I_TY if I_TY >= 0 else 0
acc = np.mean(acc_all)
sys.stdout.flush()
return I_TY, acc
def calc_varitional_information(data, labels, model_path, layer_numer, num_of_layers, epoch_index, input_size,
layerSize, sigma, pys, ks,
search_sigma=False, estimate_y_by_network=False):
"""Calculate estimation of the information using vartional IB"""
# Assumpations
estimate_y_by_network = True
# search_sigma = False
data_x = data.reshape(data.shape[0], -1)
if search_sigma:
sigmas = np.linspace(0.2, 10, 20)
sigmas = [0.2]
else:
sigmas = [sigma]
if False:
I_XT = calc_all_sigams(data_x, sigmas)
else:
I_XT = 0
if estimate_y_by_network:
I_TY, acc = estimate_IY_by_network(data, labels, from_layer=layer_numer)
else:
I_TY = 0
with printoptions(precision=3, suppress=True, formatter={'float': '{: 0.3f}'.format}):
print('[{0}:{1}] - I(X;T) - {2}, I(X;Y) - {3}, accuracy - {4}'.format(epoch_index, layer_numer,
np.array(I_XT).flatten(), I_TY, acc))
sys.stdout.flush()
# I_est = mutual_inform[ation((data, labels[:, 0][:, None]), PYs, k=ks)
# I_est,I_XT = 0, 0
params = {}
# params['DKL_YgX_YgT'] = DKL_YgX_YgT
# params['pts'] = p_ts
# params['H_Xgt'] = H_Xgt
params['local_IXT'] = I_XT
params['local_ITY'] = I_TY
return params
def estimate_Information(Xs, Ys, Ts):
"""Estimation of the MI from missing data based on k-means clustring"""
estimate_IXT = ee.mi(Xs, Ts)
estimate_IYT = ee.mi(Ys, Ts)
# estimate_IXT1 = ee.mi(Xs, Ts)
# estimate_IYT1 = ee.mi(Ys, Ts)
return estimate_IXT, estimate_IYT