File size: 7,736 Bytes
ed37a0a
 
 
 
 
 
 
 
 
 
3a5c18f
3549727
 
 
ace1b10
 
 
ed37a0a
 
efa687f
ed37a0a
 
 
 
 
 
 
 
 
 
 
b4e14ad
ed37a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024483
ed37a0a
 
 
 
 
 
 
 
 
 
ace1b10
 
 
 
 
 
 
 
ed37a0a
 
9f87cb2
 
 
 
b5d0536
9f87cb2
 
4024483
 
9f87cb2
0791f7e
 
 
4dadddd
0791f7e
 
4dadddd
ace1b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f87cb2
ed37a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from pathlib import Path
from typing import List, Dict, Tuple
import matplotlib.colors as mpl_colors

import pandas as pd
import seaborn as sns
import shinyswatch

from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui

import os
from transformers import SamModel, SamConfig, SamProcessor
import torch

from PIL import Image
import io

sns.set_theme()

dir = Path(__file__).resolve().parent
www_dir = Path(__file__).parent.resolve() / "www"

df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
species: List[str] = df["Species"].unique().tolist()
species.sort()

app_ui = ui.page_fillable(
    shinyswatch.theme.minty(),
    ui.layout_sidebar(
        ui.sidebar(
            ui.input_file("tile_image", "Choose TIFF File", accept=[".tif"], multiple=False),
            # Artwork by @allison_horst
            ui.input_selectize(
                "xvar",
                "X variable",
                numeric_cols,
                selected="Bill Length (mm)",
            ),
            ui.input_selectize(
                "yvar",
                "Y variable",
                numeric_cols,
                selected="Bill Depth (mm)",
            ),
            ui.input_checkbox_group(
                "species", "Filter by species", species, selected=species
            ),
            ui.hr(),
            ui.input_switch("by_species", "Show species", value=True),
            ui.input_switch("show_margins", "Show marginal plots", value=True),
        ),
        ui.output_image("uploaded_image"),  # display the uploaded TIFF sidewalk tile image
        ui.output_ui("value_boxes"),
        ui.output_plot("scatter", fill=True),
        ui.help_text(
            "Artwork by ",
            ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
            class_="text-end",
        ),
    ),
)

def tif_bytes_to_pil_image(tif_bytes):
  # Create a BytesIO object from the TIFF bytes
  bytes_io = io.BytesIO(tif_bytes)

  # Open the BytesIO object as an Image
  image = Image.open(bytes_io)

  return image

def server(input: Inputs, output: Outputs, session: Session):
    @reactive.Calc
    def uploaded_image_path() -> str:
        """Returns the path to the uploaded image"""
        if input.tile_image() is not None:
            return input.tile_image()[0]['datapath']  # Assuming multiple=False
        else:
            return ""  # No image uploaded

    @render.image
    def uploaded_image():
        """Displays the uploaded image"""
        img_src = uploaded_image_path()
        if img_src:
            img: ImgData = {"src": str(dir / uploaded_image_path()), "width": "100px"}
            return img
        else:
            return None  # Return an empty string if no image is uploaded
            
    def process_image():
        """Processes the uploaded image, loads the model, and evaluates to get predictions"""
        # Load the uploaded image
        uploaded_image_bytes = input.tile_image()[0].read()

        # Convert the uploaded TIFF bytes to a PIL Image object
        uploaded_image = tif_bytes_to_pil_image(uploaded_image_bytes)

        # Perform any preprocessing steps on the image as needed
        
        # Example: Convert the image to the required input format for the model
        # image_array = preprocess_image(uploaded_image)

        # Load the model configuration
        model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
        
        # Create an instance of the model architecture with the loaded configuration
        model = SamModel(config=model_config)
        # Update the model by loading the weights from saved file
        model_state_dict = torch.load(str(dir / "checkpoint.pth"), map_location=torch.device('cpu'))
        model.load_state_dict(model_state_dict)
        
        # set the device to cuda if available, otherwise use cpu
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)
        
        # Evaluate the image with the model
        # Example: predictions = model.predict(image_array)
        
        # Return the processed result (replace 'result' with the actual processed result)
        return "Processed result"

    @reactive.Calc
    def processed_result():
        """Processes the image when uploaded"""
        if input.tile_image() is not None:
            return process_image()
        else:
            return None

    @output
    @render.text
    def processed_output():
        """Displays the predictions of the uploaded image"""
        return processed_result()
    



    
    
    @reactive.Calc
    def filtered_df() -> pd.DataFrame:
        """Returns a Pandas data frame that includes only the desired rows"""

        # This calculation "req"uires that at least one species is selected
        req(len(input.species()) > 0)

        # Filter the rows so we only include the desired species
        return df[df["Species"].isin(input.species())]

    @output
    @render.plot
    def scatter():
        """Generates a plot for Shiny to display to the user"""

        # The plotting function to use depends on whether margins are desired
        plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot

        plotfunc(
            data=filtered_df(),
            x=input.xvar(),
            y=input.yvar(),
            palette=palette,
            hue="Species" if input.by_species() else None,
            hue_order=species,
            legend=False,
        )

    @output
    @render.ui
    def value_boxes():
        df = filtered_df()

        def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
            return ui.value_box(
                title,
                count,
                {"class_": "pt-1 pb-0"},
                showcase=ui.fill.as_fill_item(
                    ui.tags.img(
                        {"style": "object-fit:contain;"},
                        src=showcase_img,
                    )
                ),
                theme_color=None,
                style=f"background-color: {bgcol};",
            )

        if not input.by_species():
            return penguin_value_box(
                "Penguins",
                len(df.index),
                bg_palette["default"],
                # Artwork by @allison_horst
                showcase_img="penguins.png",
            )

        value_boxes = [
            penguin_value_box(
                name,
                len(df[df["Species"] == name]),
                bg_palette[name],
                # Artwork by @allison_horst
                showcase_img=f"{name}.png",
            )
            for name in species
            # Only include boxes for _selected_ species
            if name in input.species()
        ]

        return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))


# "darkorange", "purple", "cyan4"
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]

palette: Dict[str, Tuple[float, float, float]] = {
    "Adelie": colors[0],
    "Chinstrap": colors[1],
    "Gentoo": colors[2],
    "default": sns.color_palette()[0],  # type: ignore
}

bg_palette = {}
# Use `sns.set_style("whitegrid")` to help find approx alpha value
for name, col in palette.items():
    # Adjusted n_colors until `axe` accessibility did not complain about color contrast
    bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1])  # type: ignore


app = App(
    app_ui,
    server,
    static_assets=str(www_dir),
)