File size: 9,314 Bytes
ed37a0a
 
 
 
 
 
 
 
 
 
3a5c18f
3549727
 
 
ace1b10
 
d0ed41b
aa45550
ace1b10
ed37a0a
 
efa687f
ed37a0a
 
db5d62c
ed37a0a
 
 
 
6d6e3fa
ed37a0a
bd2df77
204c651
ed37a0a
 
 
e7cace3
 
ed37a0a
 
 
 
 
db5d62c
6d6e3fa
 
 
e8f5595
cd92a82
3db2126
cd92a82
 
6d94ad3
cd92a82
ace1b10
e640189
ed37a0a
d5f906d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d927c07
d5f906d
cd92a82
a16aa0c
 
 
 
 
 
bf00ab1
a16aa0c
bd2df77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5d62c
ed37a0a
d5f906d
d927c07
 
d5f906d
9f87cb2
 
 
 
3834b22
b5d0536
9f87cb2
 
4024483
bd2df77
 
 
 
 
 
 
 
 
 
 
 
ace1b10
27540d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace1b10
22ca03a
 
ace1b10
 
 
48b683e
ace1b10
 
22ca03a
 
 
 
48b683e
 
34e8362
48b683e
 
6d6e3fa
48b683e
1c151cf
48b683e
22ca03a
0612a8e
22ca03a
 
cb086ee
22ca03a
 
cb086ee
22ca03a
 
42ecc5d
 
 
22ca03a
6d6e3fa
 
 
22ca03a
6d6e3fa
 
 
 
22ca03a
 
 
1154a94
 
 
 
c367928
 
22ca03a
 
ed37a0a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from pathlib import Path
from typing import List, Dict, Tuple
import matplotlib.colors as mpl_colors

import pandas as pd
import seaborn as sns
import shinyswatch

from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui

import os
from transformers import SamModel, SamConfig, SamProcessor
import torch

from PIL import Image
import io
import numpy as np
import matplotlib.pyplot as plt

sns.set_theme()

dir = Path(__file__).resolve().parent
www_dir = Path(__file__).parent.resolve() / "www"

### UI ###
app_ui = ui.page_fillable(
    shinyswatch.theme.minty(),
    ui.layout_sidebar(
        ui.sidebar(
            ui.input_file("tile_image", "Choose an Image", accept=[".tif", ".tiff", ".png"], multiple=False),
        ),
        #ui.output_image("uploaded_image"),  # display the uploaded sidewalk tile image, for some reason doesn't work on all accepted files
        ui.output_plot("prediction_plots", fill=True),
        ui.output_ui("value_boxes"),
        ui.output_plot("scatter", fill=True),
        ui.help_text(
            "Project by ",
            ui.a("@agoluoglu", href="https://github.com/agoluoglu"),
            class_="text-end",
        ),
    ),
)

### HELPER FUNCTIONS ###
def bytes_to_pil_image(bytes):
    # Create a BytesIO object from the bytes
    bytes_io = io.BytesIO(bytes)
    
    # Open the BytesIO object as an Image, crop to square, resize to 256
    image = Image.open(bytes_io).convert("RGB")
    w, h = image.size
    dim = min(w, h)
    image = image.crop((0, 0, dim, dim))
    image = image.resize((256, 256))

    return image

def load_model():
    """ Get Model """
    # Load the model configuration
    model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
    processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
    
    # Create an instance of the model architecture with the loaded configuration
    model = SamModel(config=model_config)
    # Update the model by loading the weights from saved file
    model_state_dict = torch.load(str(dir / "checkpoint.pth"), map_location=torch.device('cpu'))
    model.load_state_dict(model_state_dict)
    
    # set the device to cuda if available, otherwise use cpu
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    return model, processor, device

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def generate_input_points(image, grid_size=10):
    """
    input_points (torch.FloatTensor of shape (batch_size, num_points, 2)) —
    Input 2D spatial points, this is used by the prompt encoder to encode the prompt.
    Generally yields to much better results. The points can be obtained by passing a
    list of list of list to the processor that will create corresponding torch tensors
    of dimension 4. The first dimension is the image batch size, the second dimension
    is the point batch size (i.e. how many segmentation masks do we want the model to
    predict per input point), the third dimension is the number of points per segmentation
    mask (it is possible to pass multiple points for a single mask), and the last dimension
    is the x (vertical) and y (horizontal) coordinates of the point. If a different number
    of points is passed either for each image, or for each mask, the processor will create
    “PAD” points that will correspond to the (0, 0) coordinate, and the computation of the
    embedding will be skipped for these points using the labels.
    
    """

    # Get the dimensions of the image
    array_size = max(image.width, image.height)
    
    # Generate the grid points
    x = np.linspace(0, array_size-1, grid_size)
    y = np.linspace(0, array_size-1, grid_size)
    
    # Generate a grid of coordinates
    xv, yv = np.meshgrid(x, y)
    
    # Convert the numpy arrays to lists
    xv_list = xv.tolist()
    yv_list = yv.tolist()
    
    # Combine the x and y coordinates into a list of list of lists
    input_points = [[[int(x), int(y)] for x, y in zip(x_row, y_row)] for x_row, y_row in zip(xv_list, yv_list)]
    
    #We need to reshape our nxn grid to the expected shape of the input_points tensor
    # (batch_size, point_batch_size, num_points_per_image, 2),
    # where the last dimension of 2 represents the x and y coordinates of each point.
    #batch_size: The number of images you're processing at once.
    #point_batch_size: The number of point sets you have for each image.
    #num_points_per_image: The number of points in each set.
    input_points = torch.tensor(input_points).view(1, 1, grid_size*grid_size, 2)
    
    return input_points

### SERVER ###
def server(input: Inputs, output: Outputs, session: Session):

    # set model, processor, device once
    model, processor, device = load_model()
    
    @reactive.Calc
    def uploaded_image_path() -> str:
        """Returns the path to the uploaded image"""
        if input.tile_image() is not None:
            print ("IMAGE PATH!!!!!!", input.tile_image()[0]['datapath'])
            return input.tile_image()[0]['datapath']  # Assuming multiple=False
        else:
            return ""  # No image uploaded

    # for some reason below function does not work on all accepted files
    # works on one screenshot that was converted to .tif but not another *shrug*
    # @render.image
    # def uploaded_image():
    #     """Displays the uploaded image"""
    #     img_src = uploaded_image_path()
    #     if img_src:
    #         img: ImgData = {"src": str(img_src), "width": "200px"}
    #         print("IMAGE", img)
    #         return img
    #     else:
    #         return None  # Return an empty string if no image is uploaded

    def process_image():
        """Processes the uploaded image, loads the model, and evaluates to get predictions"""
    
        """ Get Image """
        img_src = uploaded_image_path()
        
        # Read the image bytes from the file
        with open(img_src, 'rb') as f:
            image_bytes = f.read()
        
        # Convert the image bytes to a PIL Image
        image = bytes_to_pil_image(image_bytes)
    
        """ Prepare Inputs """
        # get input points prompt (grid of points)
        input_points = generate_input_points(image)
        
        # prepare image and prompt for the model
        inputs = processor(image, input_points=input_points, return_tensors="pt")
        
        # # remove batch dimension which the processor adds by default
        # inputs = {k:v.squeeze(0) for k,v in inputs.items()}
    
        # Move the input tensor to the GPU if it's not already there
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        """ Get Predictions """
        # forward pass
        with torch.no_grad():
            outputs = model(**inputs, multimask_output=False)
        
        # apply sigmoid
        prob = torch.sigmoid(outputs.pred_masks.squeeze(1))
        # convert soft mask to hard mask
        prob = prob.cpu().numpy().squeeze()
        prediction = (prob > 0.5).astype(np.uint8)
        
        # Return the processed result 
        return image, prob, prediction

    @reactive.Calc
    def get_predictions():
        """Processes the image when uploaded to get predictions"""
        if input.tile_image() is not None:
            return process_image()
        else:
            return None, None, None

    @output
    @render.plot
    def prediction_plots():
        # get prediction results when image is uploaded
        image, prob, prediction = get_predictions()

        # Check if there are no predictions (i.e., no uploaded image)
        if image is None or prob is None or prediction is None:
            # Return a placeholder plot or message
            fig, ax = plt.subplots()
            ax.text(0.5, 0.5, "Upload an image to see predictions. Predictions will take a few moments to load.", fontsize=12, ha="center")
            ax.axis("off")  # Hide axis
            plt.tight_layout()
            return fig
        
        fig, axes = plt.subplots(1, 4, figsize=(15, 30))
        
        # Extract the image data
        #image_data = image.cpu().detach().numpy()
        
        # Plot the first image on the left
        axes[0].imshow(image)  
        axes[0].set_title("Image")
        
        # Plot the probability map on the right
        axes[1].imshow(prob)
        axes[1].set_title("Probability Map")
        
        # Plot the prediction image on the right
        axes[2].imshow(prediction) 
        axes[2].set_title("Prediction")
        
        # Plot the predicted mask on the right
        axes[3].imshow(image) 
        show_mask(prediction, axes[3])
        axes[3].set_title("Predicted Mask")
        
        # Hide axis ticks and labels
        for ax in axes:
            ax.set_xticks([])
            ax.set_yticks([])
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            
        plt.tight_layout()
        
        return fig


app = App(
    app_ui,
    server,
    static_assets=str(www_dir),
)