aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright (C) 2004, Thomas Hamelryck ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Vector class, including rotation-related functions."""
import numpy # type: ignore
from typing import Tuple, Optional
def m2rotaxis(m):
"""Return angles, axis pair that corresponds to rotation matrix m.
The case where ``m`` is the identity matrix corresponds to a singularity
where any rotation axis is valid. In that case, ``Vector([1, 0, 0])``,
is returned.
"""
eps = 1e-5
# Check for singularities a la
# http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/ # noqa
if (
abs(m[0, 1] - m[1, 0]) < eps
and abs(m[0, 2] - m[2, 0]) < eps
and abs(m[1, 2] - m[2, 1]) < eps
):
# Singularity encountered. Check if its 0 or 180 deg
if (
abs(m[0, 1] + m[1, 0]) < eps
and abs(m[0, 2] + m[2, 0]) < eps
and abs(m[1, 2] + m[2, 1]) < eps
and abs(m[0, 0] + m[1, 1] + m[2, 2] - 3) < eps
):
angle = 0
else:
angle = numpy.pi
else:
# Angle always between 0 and pi
# Sense of rotation is defined by axis orientation
t = 0.5 * (numpy.trace(m) - 1)
t = max(-1, t)
t = min(1, t)
angle = numpy.arccos(t)
if angle < 1e-15:
# Angle is 0
return 0.0, Vector(1, 0, 0)
elif angle < numpy.pi:
# Angle is smaller than pi
x = m[2, 1] - m[1, 2]
y = m[0, 2] - m[2, 0]
z = m[1, 0] - m[0, 1]
axis = Vector(x, y, z)
axis.normalize()
return angle, axis
else:
# Angle is pi - special case!
m00 = m[0, 0]
m11 = m[1, 1]
m22 = m[2, 2]
if m00 > m11 and m00 > m22:
x = numpy.sqrt(m00 - m11 - m22 + 0.5)
y = m[0, 1] / (2 * x)
z = m[0, 2] / (2 * x)
elif m11 > m00 and m11 > m22:
y = numpy.sqrt(m11 - m00 - m22 + 0.5)
x = m[0, 1] / (2 * y)
z = m[1, 2] / (2 * y)
else:
z = numpy.sqrt(m22 - m00 - m11 + 0.5)
x = m[0, 2] / (2 * z)
y = m[1, 2] / (2 * z)
axis = Vector(x, y, z)
axis.normalize()
return numpy.pi, axis
def vector_to_axis(line, point):
"""Vector to axis method.
Return the vector between a point and
the closest point on a line (ie. the perpendicular
projection of the point on the line).
:type line: L{Vector}
:param line: vector defining a line
:type point: L{Vector}
:param point: vector defining the point
"""
line = line.normalized()
np = point.norm()
angle = line.angle(point)
return point - line ** (np * numpy.cos(angle))
def rotaxis2m(theta, vector):
"""Calculate left multiplying rotation matrix.
Calculate a left multiplying rotation matrix that rotates
theta rad around vector.
:type theta: float
:param theta: the rotation angle
:type vector: L{Vector}
:param vector: the rotation axis
:return: The rotation matrix, a 3x3 Numeric array.
Examples
--------
>>> from numpy import pi
>>> from Bio.PDB.vectors import rotaxis2m
>>> from Bio.PDB.vectors import Vector
>>> m = rotaxis2m(pi, Vector(1, 0, 0))
>>> Vector(1, 2, 3).left_multiply(m)
<Vector 1.00, -2.00, -3.00>
"""
vector = vector.normalized()
c = numpy.cos(theta)
s = numpy.sin(theta)
t = 1 - c
x, y, z = vector.get_array()
rot = numpy.zeros((3, 3))
# 1st row
rot[0, 0] = t * x * x + c
rot[0, 1] = t * x * y - s * z
rot[0, 2] = t * x * z + s * y
# 2nd row
rot[1, 0] = t * x * y + s * z
rot[1, 1] = t * y * y + c
rot[1, 2] = t * y * z - s * x
# 3rd row
rot[2, 0] = t * x * z - s * y
rot[2, 1] = t * y * z + s * x
rot[2, 2] = t * z * z + c
return rot
rotaxis = rotaxis2m
def refmat(p, q):
"""Return a (left multiplying) matrix that mirrors p onto q.
:type p,q: L{Vector}
:return: The mirror operation, a 3x3 Numeric array.
Examples
--------
>>> from Bio.PDB.vectors import refmat
>>> p, q = Vector(1, 2, 3), Vector(2, 3, 5)
>>> mirror = refmat(p, q)
>>> qq = p.left_multiply(mirror)
>>> print(q)
<Vector 2.00, 3.00, 5.00>
>>> print(qq)
<Vector 1.21, 1.82, 3.03>
"""
p = p.normalized()
q = q.normalized()
if (p - q).norm() < 1e-5:
return numpy.identity(3)
pq = p - q
pq.normalize()
b = pq.get_array()
b.shape = (3, 1)
i = numpy.identity(3)
ref = i - 2 * numpy.dot(b, numpy.transpose(b))
return ref
def rotmat(p, q):
"""Return a (left multiplying) matrix that rotates p onto q.
:param p: moving vector
:type p: L{Vector}
:param q: fixed vector
:type q: L{Vector}
:return: rotation matrix that rotates p onto q
:rtype: 3x3 Numeric array
Examples
--------
>>> from Bio.PDB.vectors import rotmat
>>> p, q = Vector(1, 2, 3), Vector(2, 3, 5)
>>> r = rotmat(p, q)
>>> print(q)
<Vector 2.00, 3.00, 5.00>
>>> print(p)
<Vector 1.00, 2.00, 3.00>
>>> p.left_multiply(r)
<Vector 1.21, 1.82, 3.03>
"""
rot = numpy.dot(refmat(q, -p), refmat(p, -p))
return rot
def calc_angle(v1, v2, v3):
"""Calculate angle method.
Calculate the angle between 3 vectors
representing 3 connected points.
:param v1, v2, v3: the tree points that define the angle
:type v1, v2, v3: L{Vector}
:return: angle
:rtype: float
"""
v1 = v1 - v2
v3 = v3 - v2
return v1.angle(v3)
def calc_dihedral(v1, v2, v3, v4):
"""Calculate dihedral angle method.
Calculate the dihedral angle between 4 vectors
representing 4 connected points. The angle is in
]-pi, pi].
:param v1, v2, v3, v4: the four points that define the dihedral angle
:type v1, v2, v3, v4: L{Vector}
"""
ab = v1 - v2
cb = v3 - v2
db = v4 - v3
u = ab**cb
v = db**cb
w = u**v
angle = u.angle(v)
# Determine sign of angle
try:
if cb.angle(w) > 0.001:
angle = -angle
except ZeroDivisionError:
# dihedral=pi
pass
return angle
class Vector:
"""3D vector."""
def __init__(self, x, y=None, z=None):
"""Initialize the class."""
if y is None and z is None:
# Array, list, tuple...
if len(x) != 3:
raise ValueError("Vector: x is not a list/tuple/array of 3 numbers")
self._ar = numpy.array(x, "d")
else:
# Three numbers
self._ar = numpy.array((x, y, z), "d")
def __repr__(self):
"""Return vector 3D coordinates."""
x, y, z = self._ar
return f"<Vector {x:.2f}, {y:.2f}, {z:.2f}>"
def __neg__(self):
"""Return Vector(-x, -y, -z)."""
a = -self._ar
return Vector(a)
def __add__(self, other):
"""Return Vector+other Vector or scalar."""
if isinstance(other, Vector):
a = self._ar + other._ar
else:
a = self._ar + numpy.array(other)
return Vector(a)
def __sub__(self, other):
"""Return Vector-other Vector or scalar."""
if isinstance(other, Vector):
a = self._ar - other._ar
else:
a = self._ar - numpy.array(other)
return Vector(a)
def __mul__(self, other):
"""Return Vector.Vector (dot product)."""
return sum(self._ar * other._ar)
def __truediv__(self, x):
"""Return Vector(coords/a)."""
a = self._ar / numpy.array(x)
return Vector(a)
def __pow__(self, other):
"""Return VectorxVector (cross product) or Vectorxscalar."""
if isinstance(other, Vector):
a, b, c = self._ar
d, e, f = other._ar
c1 = numpy.linalg.det(numpy.array(((b, c), (e, f))))
c2 = -numpy.linalg.det(numpy.array(((a, c), (d, f))))
c3 = numpy.linalg.det(numpy.array(((a, b), (d, e))))
return Vector(c1, c2, c3)
else:
a = self._ar * numpy.array(other)
return Vector(a)
def __getitem__(self, i):
"""Return value of array index i."""
return self._ar[i]
def __setitem__(self, i, value):
"""Assign values to array index i."""
self._ar[i] = value
def __contains__(self, i):
"""Validate if i is in array."""
return i in self._ar
def norm(self):
"""Return vector norm."""
return numpy.sqrt(sum(self._ar * self._ar))
def normsq(self):
"""Return square of vector norm."""
return abs(sum(self._ar * self._ar))
def normalize(self):
"""Normalize the Vector object.
Changes the state of ``self`` and doesn't return a value.
If you need to chain function calls or create a new object
use the ``normalized`` method.
"""
if self.norm():
self._ar = self._ar / self.norm()
def normalized(self):
"""Return a normalized copy of the Vector.
To avoid allocating new objects use the ``normalize`` method.
"""
v = self.copy()
v.normalize()
return v
def angle(self, other):
"""Return angle between two vectors."""
n1 = self.norm()
n2 = other.norm()
c = (self * other) / (n1 * n2)
# Take care of roundoff errors
c = min(c, 1)
c = max(-1, c)
return numpy.arccos(c)
def get_array(self):
"""Return (a copy of) the array of coordinates."""
return numpy.array(self._ar)
def left_multiply(self, matrix):
"""Return Vector=Matrix x Vector."""
a = numpy.dot(matrix, self._ar)
return Vector(a)
def right_multiply(self, matrix):
"""Return Vector=Vector x Matrix."""
a = numpy.dot(self._ar, matrix)
return Vector(a)
def copy(self):
"""Return a deep copy of the Vector."""
return Vector(self._ar)
"""Homogeneous matrix geometry routines.
Rotation, translation, scale, and coordinate transformations.
Robert T. Miller 2019
"""
def homog_rot_mtx(angle_rads: float, axis: str) -> numpy.array:
"""Generate a 4x4 single-axis numpy rotation matrix.
:param float angle_rads: the desired rotation angle in radians
:param char axis: character specifying the rotation axis
"""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
if "z" == axis:
return numpy.array(
(
(cosang, -sinang, 0, 0),
(sinang, cosang, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
elif "y" == axis:
return numpy.array(
(
(cosang, 0, sinang, 0),
(0, 1, 0, 0),
(-sinang, 0, cosang, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
else:
return numpy.array(
(
(1, 0, 0, 0),
(0, cosang, -sinang, 0),
(0, sinang, cosang, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
def set_Z_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing Z rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[0][0] = mtx[1][1] = cosang
mtx[1][0] = sinang
mtx[0][1] = -sinang
def set_Y_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing Y rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[0][0] = mtx[2][2] = cosang
mtx[0][2] = sinang
mtx[2][0] = -sinang
def set_X_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing X rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[1][1] = mtx[2][2] = cosang
mtx[2][1] = sinang
mtx[1][2] = -sinang
def homog_trans_mtx(x: float, y: float, z: float) -> numpy.array:
"""Generate a 4x4 numpy translation matrix.
:param x, y, z: translation in each axis
"""
return numpy.array(
((1, 0, 0, x), (0, 1, 0, y), (0, 0, 1, z), (0, 0, 0, 1)),
dtype=numpy.float64,
)
def set_homog_trans_mtx(x: float, y: float, z: float, mtx: numpy.ndarray):
"""Update existing translation matrix to new values."""
mtx[0][3] = x
mtx[1][3] = y
mtx[2][3] = z
def homog_scale_mtx(scale: float) -> numpy.array:
"""Generate a 4x4 numpy scaling matrix.
:param float scale: scale multiplier
"""
return numpy.array(
[[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]],
dtype=numpy.float64,
)
def _get_azimuth(x: float, y: float) -> float:
sign_y = -1.0 if y < 0.0 else 1.0
sign_x = -1.0 if x < 0.0 else 1.0
return (
numpy.arctan2(y, x)
if (0 != x and 0 != y)
else (numpy.pi / 2.0 * sign_y) # +/-90 if X=0, Y!=0
if 0 != y
else numpy.pi
if sign_x < 0.0 # 180 if Y=0, X < 0
else 0.0 # 0 if Y=0, X >= 0
)
def get_spherical_coordinates(xyz: numpy.array) -> Tuple[float, float, float]:
"""Compute spherical coordinates (r, azimuth, polar_angle) for X,Y,Z point.
:param array xyz: column vector (3 row x 1 column numpy array)
:return: tuple of r, azimuth, polar_angle for input coordinate
"""
r = numpy.linalg.norm(xyz)
if 0 == r:
return (0, 0, 0)
azimuth = _get_azimuth(xyz[0], xyz[1])
polar_angle = numpy.arccos(xyz[2] / r)
return (r, azimuth, polar_angle)
gtm = numpy.identity(4, dtype=numpy.float64)
gmrz = numpy.identity(4, dtype=numpy.float64)
gmry = numpy.identity(4, dtype=numpy.float64)
gmrz2 = numpy.identity(4, dtype=numpy.float64)
def coord_space(
a0: numpy.ndarray, a1: numpy.ndarray, a2: numpy.ndarray, rev: bool = False
) -> Tuple[numpy.ndarray, Optional[numpy.ndarray]]:
"""Generate transformation matrix to coordinate space defined by 3 points.
New coordinate space will have:
acs[0] on XZ plane
acs[1] origin
acs[2] on +Z axis
:param numpy column array x3 acs: X,Y,Z column input coordinates x3
:param bool rev: if True, also return reverse transformation matrix
(to return from coord_space)
:returns: 4x4 numpy array, x2 if rev=True
"""
# dbg = False
# if dbg:
# print(a0.transpose())
# print(a1.transpose())
# print(a2.transpose())
# a0 = acs[0]
# a1 = acs[1]
# a2 = acs[2]
global gtm
global gmry
global gmrz, gmrz2
tm = gtm
mry = gmry
mrz = gmrz
mrz2 = gmrz2
# tx acs[1] to origin
# tm = homog_trans_mtx(-a1[0][0], -a1[1][0], -a1[2][0])
set_homog_trans_mtx(-a1[0], -a1[1], -a1[2], tm)
# directly translate a2 using a1
p = a2 - a1
sc = get_spherical_coordinates(p)
# if dbg:
# print("p", p.transpose())
# print("sc", sc)
# rotate translated a2 -azimuth about Z
set_Z_homog_rot_mtx(-sc[1], mrz)
# rotate translated a2 -polar_angle about Y
set_Y_homog_rot_mtx(-sc[2], mry)
# mt completes a1-a2 on Z-axis, still need to align a0 with XZ plane
# mt = mry @ mrz @ tm # python 3.5 and later
mt = gmry.dot(gmrz.dot(gtm))
# if dbg:
# print("tm:\n", tm)
# print("mrz:\n", mrz)
# print("mry:\n", mry)
# # print("mt ", mt)
p = mt.dot(a0)
# if dbg:
# print("mt:\n", mt, "\na0:\n", a0, "\np:\n", p)
# need azimuth of translated a0
# sc2 = get_spherical_coordinates(p)
# print(sc2)
azimuth2 = _get_azimuth(p[0], p[1])
# rotate a0 -azimuth2 about Z to align with X
# mrz2 = homog_rot_mtx(-azimuth2, "z")
set_Z_homog_rot_mtx(-azimuth2, mrz2)
# mt = mrz2 @ mt
mt = gmrz2.dot(mt)
# if dbg:
# print("mt:", mt, "\na0:", a0, "\np:", p)
# # print(p, "\n", azimuth2, "\n", mrz2, "\n", mt)
# if dbg:
# print("mt:\n", mt)
# print("<<<<<<==============================")
if not rev:
return mt, None
# rev=True, so generate the reverse transformation
# rotate a0 theta about Z, reversing alignment with X
# mrz2 = homog_rot_mtx(azimuth2, "z")
set_Z_homog_rot_mtx(azimuth2, mrz2)
# rotate a2 phi about Y
# mry = homog_rot_mtx(sc[2], "y")
set_Y_homog_rot_mtx(sc[2], mry)
# rotate a2 theta about Z
# mrz = homog_rot_mtx(sc[1], "z")
set_Z_homog_rot_mtx(sc[1], mrz)
# translation matrix origin to a1
# tm = homog_trans_mtx(a1[0][0], a1[1][0], a1[2][0])
set_homog_trans_mtx(a1[0], a1[1], a1[2], tm)
# mr = tm @ mrz @ mry @ mrz2
mr = gtm.dot(gmrz.dot(gmry.dot(gmrz2)))
# mr = numpy.dot(tm, numpy.dot(mrz, numpy.dot(mry, mrz2)))
return mt, mr
def multi_rot_Z(angle_rads: numpy.ndarray) -> numpy.ndarray:
"""Create [entries] numpy Z rotation matrices for [entries] angles.
:param entries: int number of matrices generated.
:param angle_rads: numpy array of angles
:returns: entries x 4 x 4 homogeneous rotation matrices
"""
rz = numpy.empty((angle_rads.shape[0], 4, 4))
rz[...] = numpy.identity(4)
rz[:, 0, 0] = rz[:, 1, 1] = numpy.cos(angle_rads)
rz[:, 1, 0] = numpy.sin(angle_rads)
rz[:, 0, 1] = -rz[:, 1, 0]
return rz
def multi_rot_Y(angle_rads: numpy.ndarray) -> numpy.ndarray:
"""Create [entries] numpy Y rotation matrices for [entries] angles.
:param entries: int number of matrices generated.
:param angle_rads: numpy array of angles
:returns: entries x 4 x 4 homogeneous rotation matrices
"""
ry = numpy.empty((angle_rads.shape[0], 4, 4))
ry[...] = numpy.identity(4)
ry[:, 0, 0] = ry[:, 2, 2] = numpy.cos(angle_rads)
ry[:, 0, 2] = numpy.sin(angle_rads)
ry[:, 2, 0] = -ry[:, 0, 2]
return ry
def multi_coord_space(a3: numpy.ndarray, dLen: int, rev: bool = False) -> numpy.ndarray:
"""Generate [dLen] transform matrices to coord space defined by 3 points.
New coordinate space will have:
acs[0] on XZ plane
acs[1] origin
acs[2] on +Z axis
:param numpy array [entries]x3x3 [entries] XYZ coords for 3 atoms
:param bool rev: if True, also return reverse transformation matrix
(to return from coord_space)
:returns: [entries] 4x4 numpy arrays, x2 if rev=True
"""
# build tm translation matrix: atom1 to origin
tm = numpy.empty((dLen, 4, 4))
tm[...] = numpy.identity(4)
tm[:, 0:3, 3] = -a3[:, 1, 0:3]
# directly translate a2 into new space using a1
p = a3[:, 2] - a3[:, 1]
# get spherical coords of translated a2 (p)
r = numpy.linalg.norm(p, axis=1)
azimuth = numpy.arctan2(p[:, 1], p[:, 0])
polar_angle = numpy.arccos(numpy.divide(p[:, 2], r, where=r != 0))
# build rz rotation matrix: translated a2 -azimuth around Z
# (enables next step rotating around Y to align with Z)
rz = multi_rot_Z(-azimuth)
# build ry rotation matrix: translated a2 -polar_angle around Y
ry = multi_rot_Y(-polar_angle)
# mt completes a1-a2 on Z-axis, still need to align a0 with XZ plane
mt = numpy.matmul(ry, numpy.matmul(rz, tm))
# transform a0 to mt space
p = numpy.matmul(mt, a3[:, 0].reshape(-1, 4, 1)).reshape(-1, 4)
# print(f"mt[0]:\n{mt[0]}\na3[0][0] (a0):\n{a3[0][0]}\np[0]:\n{p[0]}")
# get azimuth of translated a0
azimuth2 = numpy.arctan2(p[:, 1], p[:, 0])
# build rotation matrix rz2 to rotate a0 -azimuth about Z to align with X
rz2 = multi_rot_Z(-azimuth2)
# update mt to be complete transform into hedron coordinate space
if not rev:
return numpy.matmul(rz2, mt[:])
# rev=True, so generate the reverse transformation
mt = numpy.matmul(rz2, mt[:])
# rotate a0 theta about Z, reversing alignment with X
mrz2 = multi_rot_Z(azimuth2)
# rotate a2 phi about Y
mry = multi_rot_Y(polar_angle)
# rotate a2 theta about Z
mrz = multi_rot_Z(azimuth)
# translation matrix origin to a1
tm[:, 0:3, 3] = a3[:, 1, 0:3]
mr = tm @ mrz @ mry @ mrz2 # tm.dot(mrz.dot(mry.dot(mrz2)))
return numpy.array([mt, mr])