aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright (C) 2013 by Yanbo Ye ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Classes and methods for finding consensus trees.
This module contains a ``_BitString`` class to assist the consensus tree
searching and some common consensus algorithms such as strict, majority rule and
adam consensus.
"""
import random
import itertools
from ast import literal_eval
from Bio.Phylo import BaseTree
from Bio.Align import MultipleSeqAlignment
class _BitString(str):
"""Helper class for binary string data (PRIVATE).
Assistant class of binary string data used for storing and
counting compatible clades in consensus tree searching. It includes
some binary manipulation(&|^~) methods.
_BitString is a sub-class of ``str`` object that only accepts two
characters('0' and '1'), with additional functions for binary-like
manipulation(&|^~). It is used to count and store the clades in
multiple trees in consensus tree searching. During counting, the
clades will be considered the same if their terminals(in terms of
``name`` attribute) are the same.
For example, let's say two trees are provided as below to search
their strict consensus tree::
tree1: (((A, B), C),(D, E))
tree2: ((A, (B, C)),(D, E))
For both trees, a _BitString object '11111' will represent their
root clade. Each '1' stands for the terminal clade in the list
[A, B, C, D, E](the order might not be the same, it's determined
by the ``get_terminal`` method of the first tree provided). For
the clade ((A, B), C) in tree1 and (A, (B, C)) in tree2, they both
can be represented by '11100'. Similarly, '11000' represents clade
(A, B) in tree1, '01100' represents clade (B, C) in tree2, and '00011'
represents clade (D, E) in both trees.
So, with the ``_count_clades`` function in this module, finally we
can get the clade counts and their _BitString representation as follows
(the root and terminals are omitted)::
clade _BitString count
ABC '11100' 2
DE '00011' 2
AB '11000' 1
BC '01100' 1
To get the _BitString representation of a clade, we can use the following
code snippet::
# suppose we are provided with a tree list, the first thing to do is
# to get all the terminal names in the first tree
term_names = [term.name for term in trees[0].get_terminals()]
# for a specific clade in any of the tree, also get its terminal names
clade_term_names = [term.name for term in clade.get_terminals()]
# then create a boolean list
boolvals = [name in clade_term_names for name in term_names]
# create the string version and pass it to _BitString
bitstr = _BitString(''.join(map(str, map(int, boolvals))))
# or, equivalently:
bitstr = _BitString.from_bool(boolvals)
To convert back::
# get all the terminal clades of the first tree
terms = [term for term in trees[0].get_terminals()]
# get the index of terminal clades in bitstr
index_list = bitstr.index_one()
# get all terminal clades by index
clade_terms = [terms[i] for i in index_list]
# create a new calde and append all the terminal clades
new_clade = BaseTree.Clade()
new_clade.clades.extend(clade_terms)
Examples
--------
>>> from Bio.Phylo.Consensus import _BitString
>>> bitstr1 = _BitString('11111')
>>> bitstr2 = _BitString('11100')
>>> bitstr3 = _BitString('01101')
>>> bitstr1
_BitString('11111')
>>> bitstr2 & bitstr3
_BitString('01100')
>>> bitstr2 | bitstr3
_BitString('11101')
>>> bitstr2 ^ bitstr3
_BitString('10001')
>>> bitstr2.index_one()
[0, 1, 2]
>>> bitstr3.index_one()
[1, 2, 4]
>>> bitstr3.index_zero()
[0, 3]
>>> bitstr1.contains(bitstr2)
True
>>> bitstr2.contains(bitstr3)
False
>>> bitstr2.independent(bitstr3)
False
>>> bitstr1.iscompatible(bitstr2)
True
>>> bitstr2.iscompatible(bitstr3)
False
"""
def __new__(cls, strdata):
"""Init from a binary string data."""
if isinstance(strdata, str) and len(strdata) == strdata.count(
"0"
) + strdata.count("1"):
return str.__new__(cls, strdata)
else:
raise TypeError(
"The input should be a binary string composed of '0' and '1'"
)
def __and__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint & otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __or__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint | otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __xor__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint ^ otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __rand__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint & selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __ror__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint | selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __rxor__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint ^ selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __repr__(self):
return "_BitString(" + str.__repr__(self) + ")"
def index_one(self):
"""Return a list of positions where the element is '1'."""
return [i for i, n in enumerate(self) if n == "1"]
def index_zero(self):
"""Return a list of positions where the element is '0'."""
return [i for i, n in enumerate(self) if n == "0"]
def contains(self, other):
"""Check if current bitstr1 contains another one bitstr2.
That is to say, the bitstr2.index_one() is a subset of
bitstr1.index_one().
Examples:
"011011" contains "011000", "011001", "000011"
Be careful, "011011" also contains "000000". Actually, all _BitString
objects contain all-zero _BitString of the same length.
"""
xorbit = self ^ other
return xorbit.count("1") == self.count("1") - other.count("1")
def independent(self, other):
"""Check if current bitstr1 is independent of another one bitstr2.
That is to say the bitstr1.index_one() and bitstr2.index_one() have
no intersection.
Be careful, all _BitString objects are independent of all-zero _BitString
of the same length.
"""
xorbit = self ^ other
return xorbit.count("1") == self.count("1") + other.count("1")
def iscompatible(self, other):
"""Check if current bitstr1 is compatible with another bitstr2.
Two conditions are considered as compatible:
1. bitstr1.contain(bitstr2) or vice versa;
2. bitstr1.independent(bitstr2).
"""
return self.contains(other) or other.contains(self) or self.independent(other)
@classmethod
def from_bool(cls, bools):
return cls("".join(map(str, map(int, bools))))
def strict_consensus(trees):
"""Search strict consensus tree from multiple trees.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
trees_iter = iter(trees)
first_tree = next(trees_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], trees_iter))
# Store bitstrs for strict clades
strict_bitstrs = [
bitstr for bitstr, t in bitstr_counts.items() if t[0] == tree_count
]
strict_bitstrs.sort(key=lambda bitstr: bitstr.count("1"), reverse=True)
# Create root
root = BaseTree.Clade()
if strict_bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# make a bitstr to clades dict and store root clade
bitstr_clades = {strict_bitstrs[0]: root}
# create inner clades
for bitstr in strict_bitstrs[1:]:
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
for bs, c in bitstr_clades.items():
# check if it should be the parent of current clade
if bs.contains(bitstr):
# remove old bitstring
del bitstr_clades[bs]
# update clade childs
new_childs = [child for child in c.clades if child not in clade_terms]
c.clades = new_childs
# set current clade as child of c
c.clades.append(clade)
# update bitstring
bs = bs ^ bitstr
# update clade
bitstr_clades[bs] = c
break
# put new clade
bitstr_clades[bitstr] = clade
return BaseTree.Tree(root=root)
def majority_consensus(trees, cutoff=0):
"""Search majority rule consensus tree from multiple trees.
This is a extend majority rule method, which means the you can set any
cutoff between 0 ~ 1 instead of 0.5. The default value of cutoff is 0 to
create a relaxed binary consensus tree in any condition (as long as one of
the provided trees is a binary tree). The branch length of each consensus
clade in the result consensus tree is the average length of all counts for
that clade.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
tree_iter = iter(trees)
first_tree = next(tree_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], tree_iter))
# Sort bitstrs by descending #occurrences, then #tips, then tip order
bitstrs = sorted(
bitstr_counts.keys(),
key=lambda bitstr: (bitstr_counts[bitstr][0], bitstr.count("1"), str(bitstr)),
reverse=True,
)
root = BaseTree.Clade()
if bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# Make a bitstr-to-clades dict and store root clade
bitstr_clades = {bitstrs[0]: root}
# create inner clades
for bitstr in bitstrs[1:]:
# apply majority rule
count_in_trees, branch_length_sum = bitstr_counts[bitstr]
confidence = 100.0 * count_in_trees / tree_count
if confidence < cutoff * 100.0:
break
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
clade.confidence = confidence
clade.branch_length = branch_length_sum / count_in_trees
bsckeys = sorted(bitstr_clades, key=lambda bs: bs.count("1"), reverse=True)
# check if current clade is compatible with previous clades and
# record its possible parent and child clades.
compatible = True
parent_bitstr = None
child_bitstrs = [] # multiple independent childs
for bs in bsckeys:
if not bs.iscompatible(bitstr):
compatible = False
break
# assign the closest ancestor as its parent
# as bsckeys is sorted, it should be the last one
if bs.contains(bitstr):
parent_bitstr = bs
# assign the closest descendant as its child
# the largest and independent clades
if (
bitstr.contains(bs)
and bs != bitstr
and all(c.independent(bs) for c in child_bitstrs)
):
child_bitstrs.append(bs)
if not compatible:
continue
if parent_bitstr:
# insert current clade; remove old bitstring
parent_clade = bitstr_clades.pop(parent_bitstr)
# update parent clade childs
parent_clade.clades = [
c for c in parent_clade.clades if c not in clade_terms
]
# set current clade as child of parent_clade
parent_clade.clades.append(clade)
# update bitstring
# parent = parent ^ bitstr
# update clade
bitstr_clades[parent_bitstr] = parent_clade
if child_bitstrs:
remove_list = []
for c in child_bitstrs:
remove_list.extend(c.index_one())
child_clade = bitstr_clades[c]
parent_clade.clades.remove(child_clade)
clade.clades.append(child_clade)
remove_terms = [terms[i] for i in remove_list]
clade.clades = [c for c in clade.clades if c not in remove_terms]
# put new clade
bitstr_clades[bitstr] = clade
if (len(bitstr_clades) == len(terms) - 1) or (
len(bitstr_clades) == len(terms) - 2 and len(root.clades) == 3
):
break
return BaseTree.Tree(root=root)
def adam_consensus(trees):
"""Search Adam Consensus tree from multiple trees.
:Parameters:
trees : list
list of trees to produce consensus tree.
"""
clades = [tree.root for tree in trees]
return BaseTree.Tree(root=_part(clades), rooted=True)
def _part(clades):
"""Recursive function for Adam Consensus algorithm (PRIVATE)."""
new_clade = None
terms = clades[0].get_terminals()
term_names = [term.name for term in terms]
if len(terms) == 1 or len(terms) == 2:
new_clade = clades[0]
else:
bitstrs = {_BitString("1" * len(terms))}
for clade in clades:
for child in clade.clades:
bitstr = _clade_to_bitstr(child, term_names)
to_remove = set()
to_add = set()
for bs in bitstrs:
if bs == bitstr:
continue
elif bs.contains(bitstr):
to_add.add(bitstr)
to_add.add(bs ^ bitstr)
to_remove.add(bs)
elif bitstr.contains(bs):
to_add.add(bs ^ bitstr)
elif not bs.independent(bitstr):
to_add.add(bs & bitstr)
to_add.add(bs & bitstr ^ bitstr)
to_add.add(bs & bitstr ^ bs)
to_remove.add(bs)
# bitstrs = bitstrs | to_add
bitstrs ^= to_remove
if to_add:
for ta in sorted(to_add, key=lambda bs: bs.count("1")):
independent = True
for bs in bitstrs:
if not ta.independent(bs):
independent = False
break
if independent:
bitstrs.add(ta)
new_clade = BaseTree.Clade()
for bitstr in sorted(bitstrs):
indices = bitstr.index_one()
if len(indices) == 1:
new_clade.clades.append(terms[indices[0]])
elif len(indices) == 2:
bifur_clade = BaseTree.Clade()
bifur_clade.clades.append(terms[indices[0]])
bifur_clade.clades.append(terms[indices[1]])
new_clade.clades.append(bifur_clade)
elif len(indices) > 2:
part_names = [term_names[i] for i in indices]
next_clades = []
for clade in clades:
next_clades.append(_sub_clade(clade, part_names))
# next_clades = [clade.common_ancestor([clade.find_any(name=name) for name in part_names]) for clade in clades]
new_clade.clades.append(_part(next_clades))
return new_clade
def _sub_clade(clade, term_names):
"""Extract a compatible subclade that only contains the given terminal names (PRIVATE)."""
term_clades = [clade.find_any(name) for name in term_names]
sub_clade = clade.common_ancestor(term_clades)
if len(term_names) != sub_clade.count_terminals():
temp_clade = BaseTree.Clade()
temp_clade.clades.extend(term_clades)
for c in sub_clade.find_clades(terminal=False, order="preorder"):
if c == sub_clade.root:
continue
childs = set(c.find_clades(terminal=True)) & set(term_clades)
if childs:
for tc in temp_clade.find_clades(terminal=False, order="preorder"):
tc_childs = set(tc.clades)
tc_new_clades = tc_childs - childs
if childs.issubset(tc_childs) and tc_new_clades:
tc.clades = list(tc_new_clades)
child_clade = BaseTree.Clade()
child_clade.clades.extend(list(childs))
tc.clades.append(child_clade)
sub_clade = temp_clade
return sub_clade
def _count_clades(trees):
"""Count distinct clades (different sets of terminal names) in the trees (PRIVATE).
Return a tuple first a dict of bitstring (representing clade) and a tuple of its count of
occurrences and sum of branch length for that clade, second the number of trees processed.
:Parameters:
trees : iterable
An iterable that returns the trees to count
"""
bitstrs = {}
tree_count = 0
for tree in trees:
tree_count += 1
clade_bitstrs = _tree_to_bitstrs(tree)
for clade in tree.find_clades(terminal=False):
bitstr = clade_bitstrs[clade]
if bitstr in bitstrs:
count, sum_bl = bitstrs[bitstr]
count += 1
sum_bl += clade.branch_length or 0
bitstrs[bitstr] = (count, sum_bl)
else:
bitstrs[bitstr] = (1, clade.branch_length or 0)
return bitstrs, tree_count
def get_support(target_tree, trees, len_trees=None):
"""Calculate branch support for a target tree given bootstrap replicate trees.
:Parameters:
target_tree : Tree
tree to calculate branch support for.
trees : iterable
iterable of trees used to calculate branch support.
len_trees : int
optional count of replicates in trees. len_trees must be provided
when len(trees) is not a valid operation.
"""
term_names = sorted(term.name for term in target_tree.find_clades(terminal=True))
bitstrs = {}
size = len_trees
if size is None:
try:
size = len(trees)
except TypeError:
raise TypeError(
"Trees does not support len(trees), "
"you must provide the number of replicates in trees "
"as the optional parameter len_trees."
) from None
for clade in target_tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
bitstrs[bitstr] = (clade, 0)
for tree in trees:
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
if bitstr in bitstrs:
c, t = bitstrs[bitstr]
c.confidence = (t + 1) * 100.0 / size
bitstrs[bitstr] = (c, t + 1)
return target_tree
def bootstrap(msa, times):
"""Generate bootstrap replicates from a multiple sequence alignment (OBSOLETE).
:Parameters:
msa : MultipleSeqAlignment
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
"""
length = len(msa[0])
i = 0
while i < times:
i += 1
item = None
for j in range(length):
col = random.randint(0, length - 1)
if not item:
item = msa[:, col : col + 1]
else:
item += msa[:, col : col + 1]
yield item
def bootstrap_trees(alignment, times, tree_constructor):
"""Generate bootstrap replicate trees from a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
tree_constructor : TreeConstructor
tree constructor to be used to build trees.
"""
if isinstance(alignment, MultipleSeqAlignment):
length = len(alignment[0])
for i in range(times):
bootstrapped_alignment = None
for j in range(length):
col = random.randint(0, length - 1)
if bootstrapped_alignment is None:
bootstrapped_alignment = alignment[:, col : col + 1]
else:
bootstrapped_alignment += alignment[:, col : col + 1]
tree = tree_constructor.build_tree(alignment)
yield tree
else:
n, m = alignment.shape
for i in range(times):
cols = [random.randint(0, m - 1) for j in range(m)]
tree = tree_constructor.build_tree(alignment[:, cols])
yield tree
def bootstrap_consensus(alignment, times, tree_constructor, consensus):
"""Consensus tree of a series of bootstrap trees for a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
Multiple sequence alignment to generate replicates.
times : int
Number of bootstrap times.
tree_constructor : TreeConstructor
Tree constructor to be used to build trees.
consensus : function
Consensus method in this module: ``strict_consensus``,
``majority_consensus``, ``adam_consensus``.
"""
trees = bootstrap_trees(alignment, times, tree_constructor)
tree = consensus(trees)
return tree
def _clade_to_bitstr(clade, tree_term_names):
"""Create a BitString representing a clade, given ordered tree taxon names (PRIVATE)."""
clade_term_names = {term.name for term in clade.find_clades(terminal=True)}
return _BitString.from_bool((name in clade_term_names) for name in tree_term_names)
def _tree_to_bitstrs(tree):
"""Create a dict of a tree's clades to corresponding BitStrings (PRIVATE)."""
clades_bitstrs = {}
term_names = [term.name for term in tree.find_clades(terminal=True)]
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
clades_bitstrs[clade] = bitstr
return clades_bitstrs
def _bitstring_topology(tree):
"""Generate a branch length dict for a tree, keyed by BitStrings (PRIVATE).
Create a dict of all clades' BitStrings to the corresponding branch
lengths (rounded to 5 decimal places).
"""
bitstrs = {}
for clade, bitstr in _tree_to_bitstrs(tree).items():
bitstrs[bitstr] = round(clade.branch_length or 0.0, 5)
return bitstrs
def _equal_topology(tree1, tree2):
"""Are two trees are equal in terms of topology and branch lengths (PRIVATE).
(Branch lengths checked to 5 decimal places.)
"""
term_names1 = {term.name for term in tree1.find_clades(terminal=True)}
term_names2 = {term.name for term in tree2.find_clades(terminal=True)}
return (term_names1 == term_names2) and (
_bitstring_topology(tree1) == _bitstring_topology(tree2)
)