aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright 2000 Andrew Dalke.
# Copyright 2000-2002 Brad Chapman.
# Copyright 2004-2005, 2010 by M de Hoon.
# Copyright 2007-2020 by Peter Cock.
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Provide objects to represent biological sequences.
See also the Seq_ wiki and the chapter in our tutorial:
- `HTML Tutorial`_
- `PDF Tutorial`_
.. _Seq: http://biopython.org/wiki/Seq
.. _`HTML Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.html
.. _`PDF Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf
"""
import array
import numbers
import warnings
from abc import ABC
from abc import abstractmethod
from Bio import BiopythonDeprecationWarning
from Bio import BiopythonWarning
from Bio.Data import CodonTable
from Bio.Data import IUPACData
def _maketrans(complement_mapping):
"""Make a python string translation table (PRIVATE).
Arguments:
- complement_mapping - a dictionary such as ambiguous_dna_complement
and ambiguous_rna_complement from Data.IUPACData.
Returns a translation table (a bytes object of length 256) for use with
the python string's translate method to use in a (reverse) complement.
Compatible with lower case and upper case sequences.
For internal use only.
"""
keys = "".join(complement_mapping.keys()).encode("ASCII")
values = "".join(complement_mapping.values()).encode("ASCII")
return bytes.maketrans(keys + keys.lower(), values + values.lower())
ambiguous_dna_complement = dict(IUPACData.ambiguous_dna_complement)
ambiguous_dna_complement["U"] = ambiguous_dna_complement["T"]
_dna_complement_table = _maketrans(ambiguous_dna_complement)
del ambiguous_dna_complement
ambiguous_rna_complement = dict(IUPACData.ambiguous_rna_complement)
ambiguous_rna_complement["T"] = ambiguous_rna_complement["U"]
_rna_complement_table = _maketrans(ambiguous_rna_complement)
del ambiguous_rna_complement
class SequenceDataAbstractBaseClass(ABC):
"""Abstract base class for sequence content providers.
Most users will not need to use this class. It is used internally as a base
class for sequence content provider classes such as _UndefinedSequenceData
defined in this module, and _TwoBitSequenceData in Bio.SeqIO.TwoBitIO.
Instances of these classes can be used instead of a ``bytes`` object as the
data argument when creating a Seq object, and provide the sequence content
only when requested via ``__getitem__``. This allows lazy parsers to load
and parse sequence data from a file only for the requested sequence regions,
and _UndefinedSequenceData instances to raise an exception when undefined
sequence data are requested.
Future implementations of lazy parsers that similarly provide on-demand
parsing of sequence data should use a subclass of this abstract class and
implement the abstract methods ``__len__`` and ``__getitem__``:
* ``__len__`` must return the sequence length;
* ``__getitem__`` must return
* a ``bytes`` object for the requested region; or
* a new instance of the subclass for the requested region; or
* raise an ``UndefinedSequenceError``.
Calling ``__getitem__`` for a sequence region of size zero should always
return an empty ``bytes`` object.
Calling ``__getitem__`` for the full sequence (as in data[:]) should
either return a ``bytes`` object with the full sequence, or raise an
``UndefinedSequenceError``.
Subclasses of SequenceDataAbstractBaseClass must call ``super().__init__()``
as part of their ``__init__`` method.
"""
__slots__ = ()
def __init__(self):
"""Check if ``__getitem__`` returns a bytes-like object."""
assert self[:0] == b""
@abstractmethod
def __len__(self):
pass
@abstractmethod
def __getitem__(self, key):
pass
def __bytes__(self):
return self[:]
def __hash__(self):
return hash(bytes(self))
def __eq__(self, other):
return bytes(self) == other
def __lt__(self, other):
return bytes(self) < other
def __le__(self, other):
return bytes(self) <= other
def __gt__(self, other):
return bytes(self) > other
def __ge__(self, other):
return bytes(self) >= other
def __add__(self, other):
try:
return bytes(self) + bytes(other)
except UndefinedSequenceError:
return NotImplemented
# will be handled by _UndefinedSequenceData.__radd__ or
# by _PartiallyDefinedSequenceData.__radd__
def __radd__(self, other):
return other + bytes(self)
def __mul__(self, other):
return other * bytes(self)
def __contains__(self, item):
return bytes(self).__contains__(item)
def decode(self, encoding="utf-8"):
"""Decode the data as bytes using the codec registered for encoding.
encoding
The encoding with which to decode the bytes.
"""
return bytes(self).decode(encoding)
def count(self, sub, start=None, end=None):
"""Return the number of non-overlapping occurrences of sub in data[start:end].
Optional arguments start and end are interpreted as in slice notation.
This method behaves as the count method of Python strings.
"""
return bytes(self).count(sub, start, end)
def find(self, sub, start=None, end=None):
"""Return the lowest index in data where subsection sub is found.
Return the lowest index in data where subsection sub is found,
such that sub is contained within data[start,end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
"""
return bytes(self).find(sub, start, end)
def rfind(self, sub, start=None, end=None):
"""Return the highest index in data where subsection sub is found.
Return the highest index in data where subsection sub is found,
such that sub is contained within data[start,end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
"""
return bytes(self).rfind(sub, start, end)
def index(self, sub, start=None, end=None):
"""Return the lowest index in data where subsection sub is found.
Return the lowest index in data where subsection sub is found,
such that sub is contained within data[start,end]. Optional
arguments start and end are interpreted as in slice notation.
Raises ValueError when the subsection is not found.
"""
return bytes(self).index(sub, start, end)
def rindex(self, sub, start=None, end=None):
"""Return the highest index in data where subsection sub is found.
Return the highest index in data where subsection sub is found,
such that sub is contained within data[start,end]. Optional
arguments start and end are interpreted as in slice notation.
Raise ValueError when the subsection is not found.
"""
return bytes(self).rindex(sub, start, end)
def startswith(self, prefix, start=None, end=None):
"""Return True if data starts with the specified prefix, False otherwise.
With optional start, test data beginning at that position.
With optional end, stop comparing data at that position.
prefix can also be a tuple of bytes to try.
"""
return bytes(self).startswith(prefix, start, end)
def endswith(self, suffix, start=None, end=None):
"""Return True if data ends with the specified suffix, False otherwise.
With optional start, test data beginning at that position.
With optional end, stop comparing data at that position.
suffix can also be a tuple of bytes to try.
"""
return bytes(self).endswith(suffix, start, end)
def split(self, sep=None, maxsplit=-1):
"""Return a list of the sections in the data, using sep as the delimiter.
sep
The delimiter according which to split the data.
None (the default value) means split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
maxsplit
Maximum number of splits to do.
-1 (the default value) means no limit.
"""
return bytes(self).split(sep, maxsplit)
def rsplit(self, sep=None, maxsplit=-1):
"""Return a list of the sections in the data, using sep as the delimiter.
sep
The delimiter according which to split the data.
None (the default value) means split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
maxsplit
Maximum number of splits to do.
-1 (the default value) means no limit.
Splitting is done starting at the end of the data and working to the front.
"""
return bytes(self).rsplit(sep, maxsplit)
def strip(self, chars=None):
"""Strip leading and trailing characters contained in the argument.
If the argument is omitted or None, strip leading and trailing ASCII whitespace.
"""
return bytes(self).strip(chars)
def lstrip(self, chars=None):
"""Strip leading characters contained in the argument.
If the argument is omitted or None, strip leading ASCII whitespace.
"""
return bytes(self).lstrip(chars)
def rstrip(self, chars=None):
"""Strip trailing characters contained in the argument.
If the argument is omitted or None, strip trailing ASCII whitespace.
"""
return bytes(self).rstrip(chars)
def upper(self):
"""Return a copy of data with all ASCII characters converted to uppercase."""
return bytes(self).upper()
def lower(self):
"""Return a copy of data with all ASCII characters converted to lowercase."""
return bytes(self).lower()
def isupper(self):
"""Return True if all ASCII characters in data are uppercase.
If there are no cased characters, the method returns False.
"""
return bytes(self).isupper()
def islower(self):
"""Return True if all ASCII characters in data are lowercase.
If there are no cased characters, the method returns False.
"""
return bytes(self).islower()
def replace(self, old, new):
"""Return a copy with all occurrences of substring old replaced by new."""
return bytes(self).replace(old, new)
def translate(self, table, delete=b""):
"""Return a copy with each character mapped by the given translation table.
table
Translation table, which must be a bytes object of length 256.
All characters occurring in the optional argument delete are removed.
The remaining characters are mapped through the given translation table.
"""
return bytes(self).translate(table, delete)
@property
def defined(self):
"""Return True if the sequence is defined, False if undefined or partially defined.
Zero-length sequences are always considered to be defined.
"""
return True
@property
def defined_ranges(self):
"""Return a tuple of the ranges where the sequence contents is defined.
The return value has the format ((start1, end1), (start2, end2), ...).
"""
length = len(self)
if length > 0:
return ((0, length),)
else:
return ()
class _SeqAbstractBaseClass(ABC):
"""Abstract base class for the Seq and MutableSeq classes (PRIVATE).
Most users will not need to use this class. It is used internally as an
abstract base class for Seq and MutableSeq, as most of their methods are
identical.
"""
__slots__ = ("_data",)
__array_ufunc__ = None # turn off numpy Ufuncs
@abstractmethod
def __init__(self):
pass
def __bytes__(self):
return bytes(self._data)
def __repr__(self):
"""Return (truncated) representation of the sequence."""
data = self._data
if isinstance(data, _UndefinedSequenceData):
return f"Seq(None, length={len(self)})"
if isinstance(data, _PartiallyDefinedSequenceData):
d = {}
for position, seq in data._data.items():
if len(seq) > 60:
start = seq[:54].decode("ASCII")
end = seq[-3:].decode("ASCII")
seq = f"{start}...{end}"
else:
seq = seq.decode("ASCII")
d[position] = seq
return "Seq(%r, length=%d)" % (d, len(self))
if len(data) > 60:
# Shows the last three letters as it is often useful to see if
# there is a stop codon at the end of a sequence.
# Note total length is 54+3+3=60
start = data[:54].decode("ASCII")
end = data[-3:].decode("ASCII")
return f"{self.__class__.__name__}('{start}...{end}')"
else:
data = data.decode("ASCII")
return f"{self.__class__.__name__}('{data}')"
def __str__(self):
"""Return the full sequence as a python string."""
return self._data.decode("ASCII")
def __eq__(self, other):
"""Compare the sequence to another sequence or a string.
Sequences are equal to each other if their sequence contents is
identical:
>>> from Bio.Seq import Seq, MutableSeq
>>> seq1 = Seq("ACGT")
>>> seq2 = Seq("ACGT")
>>> mutable_seq = MutableSeq("ACGT")
>>> seq1 == seq2
True
>>> seq1 == mutable_seq
True
>>> seq1 == "ACGT"
True
Note that the sequence objects themselves are not identical to each
other:
>>> id(seq1) == id(seq2)
False
>>> seq1 is seq2
False
Sequences can also be compared to strings, ``bytes``, and ``bytearray``
objects:
>>> seq1 == "ACGT"
True
>>> seq1 == b"ACGT"
True
>>> seq1 == bytearray(b"ACGT")
True
"""
if isinstance(other, _SeqAbstractBaseClass):
return self._data == other._data
elif isinstance(other, str):
return self._data == other.encode("ASCII")
else:
return self._data == other
def __lt__(self, other):
"""Implement the less-than operand."""
if isinstance(other, _SeqAbstractBaseClass):
return self._data < other._data
elif isinstance(other, str):
return self._data < other.encode("ASCII")
else:
return self._data < other
def __le__(self, other):
"""Implement the less-than or equal operand."""
if isinstance(other, _SeqAbstractBaseClass):
return self._data <= other._data
elif isinstance(other, str):
return self._data <= other.encode("ASCII")
else:
return self._data <= other
def __gt__(self, other):
"""Implement the greater-than operand."""
if isinstance(other, _SeqAbstractBaseClass):
return self._data > other._data
elif isinstance(other, str):
return self._data > other.encode("ASCII")
else:
return self._data > other
def __ge__(self, other):
"""Implement the greater-than or equal operand."""
if isinstance(other, _SeqAbstractBaseClass):
return self._data >= other._data
elif isinstance(other, str):
return self._data >= other.encode("ASCII")
else:
return self._data >= other
def __len__(self):
"""Return the length of the sequence."""
return len(self._data)
def __iter__(self):
"""Return an iterable of the sequence."""
return self._data.decode("ASCII").__iter__()
def __getitem__(self, index):
"""Return a subsequence as a single letter or as a sequence object.
If the index is an integer, a single letter is returned as a Python
string:
>>> seq = Seq('ACTCGACGTCG')
>>> seq[5]
'A'
Otherwise, a new sequence object of the same class is returned:
>>> seq[5:8]
Seq('ACG')
>>> mutable_seq = MutableSeq('ACTCGACGTCG')
>>> mutable_seq[5:8]
MutableSeq('ACG')
"""
if isinstance(index, numbers.Integral):
# Return a single letter as a string
return chr(self._data[index])
else:
# Return the (sub)sequence as another Seq/MutableSeq object
return self.__class__(self._data[index])
def __add__(self, other):
"""Add a sequence or string to this sequence.
>>> from Bio.Seq import Seq, MutableSeq
>>> Seq("MELKI") + "LV"
Seq('MELKILV')
>>> MutableSeq("MELKI") + "LV"
MutableSeq('MELKILV')
"""
if isinstance(other, _SeqAbstractBaseClass):
return self.__class__(self._data + other._data)
elif isinstance(other, str):
return self.__class__(self._data + other.encode("ASCII"))
else:
# If other is a SeqRecord, then SeqRecord's __radd__ will handle
# this. If not, returning NotImplemented will trigger a TypeError.
return NotImplemented
def __radd__(self, other):
"""Add a sequence string on the left.
>>> from Bio.Seq import Seq, MutableSeq
>>> "LV" + Seq("MELKI")
Seq('LVMELKI')
>>> "LV" + MutableSeq("MELKI")
MutableSeq('LVMELKI')
Adding two sequence objects is handled via the __add__ method.
"""
if isinstance(other, str):
return self.__class__(other.encode("ASCII") + self._data)
else:
return NotImplemented
def __mul__(self, other):
"""Multiply sequence by integer.
>>> from Bio.Seq import Seq, MutableSeq
>>> Seq('ATG') * 2
Seq('ATGATG')
>>> MutableSeq('ATG') * 2
MutableSeq('ATGATG')
"""
if not isinstance(other, numbers.Integral):
raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
# we would like to simply write
# data = self._data * other
# here, but currently that causes a bug on PyPy if self._data is a
# bytearray and other is a numpy integer. Using this workaround:
data = self._data.__mul__(other)
return self.__class__(data)
def __rmul__(self, other):
"""Multiply integer by sequence.
>>> from Bio.Seq import Seq
>>> 2 * Seq('ATG')
Seq('ATGATG')
"""
if not isinstance(other, numbers.Integral):
raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
# we would like to simply write
# data = self._data * other
# here, but currently that causes a bug on PyPy if self._data is a
# bytearray and other is a numpy integer. Using this workaround:
data = self._data.__mul__(other)
return self.__class__(data)
def __imul__(self, other):
"""Multiply the sequence object by other and assign.
>>> from Bio.Seq import Seq
>>> seq = Seq('ATG')
>>> seq *= 2
>>> seq
Seq('ATGATG')
Note that this is different from in-place multiplication. The ``seq``
variable is reassigned to the multiplication result, but any variable
pointing to ``seq`` will remain unchanged:
>>> seq = Seq('ATG')
>>> seq2 = seq
>>> id(seq) == id(seq2)
True
>>> seq *= 2
>>> seq
Seq('ATGATG')
>>> seq2
Seq('ATG')
>>> id(seq) == id(seq2)
False
"""
if not isinstance(other, numbers.Integral):
raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
# we would like to simply write
# data = self._data * other
# here, but currently that causes a bug on PyPy if self._data is a
# bytearray and other is a numpy integer. Using this workaround:
data = self._data.__mul__(other)
return self.__class__(data)
def count(self, sub, start=None, end=None):
"""Return a non-overlapping count, like that of a python string.
The number of occurrences of substring argument sub in the
(sub)sequence given by [start:end] is returned as an integer.
Optional arguments start and end are interpreted as in slice
notation.
Arguments:
- sub - a string or another Seq object to look for
- start - optional integer, slice start
- end - optional integer, slice end
e.g.
>>> from Bio.Seq import Seq
>>> my_seq = Seq("AAAATGA")
>>> print(my_seq.count("A"))
5
>>> print(my_seq.count("ATG"))
1
>>> print(my_seq.count(Seq("AT")))
1
>>> print(my_seq.count("AT", 2, -1))
1
HOWEVER, please note because the ``count`` method of Seq and MutableSeq
objects, like that of Python strings, do a non-overlapping search, this
may not give the answer you expect:
>>> "AAAA".count("AA")
2
>>> print(Seq("AAAA").count("AA"))
2
For an overlapping search, use the ``count_overlap`` method:
>>> print(Seq("AAAA").count_overlap("AA"))
3
"""
if isinstance(sub, MutableSeq):
sub = sub._data
elif isinstance(sub, Seq):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
return self._data.count(sub, start, end)
def count_overlap(self, sub, start=None, end=None):
"""Return an overlapping count.
Returns an integer, the number of occurrences of substring
argument sub in the (sub)sequence given by [start:end].
Optional arguments start and end are interpreted as in slice
notation.
Arguments:
- sub - a string or another Seq object to look for
- start - optional integer, slice start
- end - optional integer, slice end
e.g.
>>> from Bio.Seq import Seq
>>> print(Seq("AAAA").count_overlap("AA"))
3
>>> print(Seq("ATATATATA").count_overlap("ATA"))
4
>>> print(Seq("ATATATATA").count_overlap("ATA", 3, -1))
1
For a non-overlapping search, use the ``count`` method:
>>> print(Seq("AAAA").count("AA"))
2
Where substrings do not overlap, ``count_overlap`` behaves the same as
the ``count`` method:
>>> from Bio.Seq import Seq
>>> my_seq = Seq("AAAATGA")
>>> print(my_seq.count_overlap("A"))
5
>>> my_seq.count_overlap("A") == my_seq.count("A")
True
>>> print(my_seq.count_overlap("ATG"))
1
>>> my_seq.count_overlap("ATG") == my_seq.count("ATG")
True
>>> print(my_seq.count_overlap(Seq("AT")))
1
>>> my_seq.count_overlap(Seq("AT")) == my_seq.count(Seq("AT"))
True
>>> print(my_seq.count_overlap("AT", 2, -1))
1
>>> my_seq.count_overlap("AT", 2, -1) == my_seq.count("AT", 2, -1)
True
HOWEVER, do not use this method for such cases because the
count() method is much for efficient.
"""
if isinstance(sub, MutableSeq):
sub = sub._data
elif isinstance(sub, Seq):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
data = self._data
overlap_count = 0
while True:
start = data.find(sub, start, end) + 1
if start != 0:
overlap_count += 1
else:
return overlap_count
def __contains__(self, item):
"""Return True if item is a subsequence of the sequence, and False otherwise.
e.g.
>>> from Bio.Seq import Seq, MutableSeq
>>> my_dna = Seq("ATATGAAATTTGAAAA")
>>> "AAA" in my_dna
True
>>> Seq("AAA") in my_dna
True
>>> MutableSeq("AAA") in my_dna
True
"""
if isinstance(item, _SeqAbstractBaseClass):
item = bytes(item)
elif isinstance(item, str):
item = item.encode("ASCII")
return item in self._data
def find(self, sub, start=None, end=None):
"""Return the lowest index in the sequence where subsequence sub is found.
With optional arguments start and end, return the lowest index in the
sequence such that the subsequence sub is contained within the sequence
region [start:end].
Arguments:
- sub - a string or another Seq or MutableSeq object to search for
- start - optional integer, slice start
- end - optional integer, slice end
Returns -1 if the subsequence is NOT found.
e.g. Locating the first typical start codon, AUG, in an RNA sequence:
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.find("AUG")
3
The next typical start codon can then be found by starting the search
at position 4:
>>> my_rna.find("AUG", 4)
15
"""
if isinstance(sub, _SeqAbstractBaseClass):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
return self._data.find(sub, start, end)
def rfind(self, sub, start=None, end=None):
"""Return the highest index in the sequence where subsequence sub is found.
With optional arguments start and end, return the highest index in the
sequence such that the subsequence sub is contained within the sequence
region [start:end].
Arguments:
- sub - a string or another Seq or MutableSeq object to search for
- start - optional integer, slice start
- end - optional integer, slice end
Returns -1 if the subsequence is NOT found.
e.g. Locating the last typical start codon, AUG, in an RNA sequence:
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.rfind("AUG")
15
The location of the typical start codon before that can be found by
ending the search at position 15:
>>> my_rna.rfind("AUG", end=15)
3
"""
if isinstance(sub, _SeqAbstractBaseClass):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
return self._data.rfind(sub, start, end)
def index(self, sub, start=None, end=None):
"""Return the lowest index in the sequence where subsequence sub is found.
With optional arguments start and end, return the lowest index in the
sequence such that the subsequence sub is contained within the sequence
region [start:end].
Arguments:
- sub - a string or another Seq or MutableSeq object to search for
- start - optional integer, slice start
- end - optional integer, slice end
Raises a ValueError if the subsequence is NOT found.
e.g. Locating the first typical start codon, AUG, in an RNA sequence:
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.index("AUG")
3
The next typical start codon can then be found by starting the search
at position 4:
>>> my_rna.index("AUG", 4)
15
This method performs the same search as the ``find`` method. However,
if the subsequence is not found, ``find`` returns -1 which ``index``
raises a ValueError:
>>> my_rna.index("T")
Traceback (most recent call last):
...
ValueError: ...
>>> my_rna.find("T")
-1
"""
if isinstance(sub, MutableSeq):
sub = sub._data
elif isinstance(sub, Seq):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
return self._data.index(sub, start, end)
def rindex(self, sub, start=None, end=None):
"""Return the highest index in the sequence where subsequence sub is found.
With optional arguments start and end, return the highest index in the
sequence such that the subsequence sub is contained within the sequence
region [start:end].
Arguments:
- sub - a string or another Seq or MutableSeq object to search for
- start - optional integer, slice start
- end - optional integer, slice end
Returns -1 if the subsequence is NOT found.
e.g. Locating the last typical start codon, AUG, in an RNA sequence:
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.rindex("AUG")
15
The location of the typical start codon before that can be found by
ending the search at position 15:
>>> my_rna.rindex("AUG", end=15)
3
This method performs the same search as the ``rfind`` method. However,
if the subsequence is not found, ``rfind`` returns -1 which ``rindex``
raises a ValueError:
>>> my_rna.rindex("T")
Traceback (most recent call last):
...
ValueError: ...
>>> my_rna.rfind("T")
-1
"""
if isinstance(sub, MutableSeq):
sub = sub._data
elif isinstance(sub, Seq):
sub = bytes(sub)
elif isinstance(sub, str):
sub = sub.encode("ASCII")
elif not isinstance(sub, (bytes, bytearray)):
raise TypeError(
"a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
% type(sub)
)
return self._data.rindex(sub, start, end)
def startswith(self, prefix, start=None, end=None):
"""Return True if the sequence starts with the given prefix, False otherwise.
Return True if the sequence starts with the specified prefix
(a string or another Seq object), False otherwise.
With optional start, test sequence beginning at that position.
With optional end, stop comparing sequence at that position.
prefix can also be a tuple of strings to try. e.g.
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.startswith("GUC")
True
>>> my_rna.startswith("AUG")
False
>>> my_rna.startswith("AUG", 3)
True
>>> my_rna.startswith(("UCC", "UCA", "UCG"), 1)
True
"""
if isinstance(prefix, tuple):
prefix = tuple(
bytes(p) if isinstance(p, _SeqAbstractBaseClass) else p.encode("ASCII")
for p in prefix
)
elif isinstance(prefix, _SeqAbstractBaseClass):
prefix = bytes(prefix)
elif isinstance(prefix, str):
prefix = prefix.encode("ASCII")
return self._data.startswith(prefix, start, end)
def endswith(self, suffix, start=None, end=None):
"""Return True if the sequence ends with the given suffix, False otherwise.
Return True if the sequence ends with the specified suffix
(a string or another Seq object), False otherwise.
With optional start, test sequence beginning at that position.
With optional end, stop comparing sequence at that position.
suffix can also be a tuple of strings to try. e.g.
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_rna.endswith("UUG")
True
>>> my_rna.endswith("AUG")
False
>>> my_rna.endswith("AUG", 0, 18)
True
>>> my_rna.endswith(("UCC", "UCA", "UUG"))
True
"""
if isinstance(suffix, tuple):
suffix = tuple(
bytes(p) if isinstance(p, _SeqAbstractBaseClass) else p.encode("ASCII")
for p in suffix
)
elif isinstance(suffix, _SeqAbstractBaseClass):
suffix = bytes(suffix)
elif isinstance(suffix, str):
suffix = suffix.encode("ASCII")
return self._data.endswith(suffix, start, end)
def split(self, sep=None, maxsplit=-1):
"""Return a list of subsequences when splitting the sequence by separator sep.
Return a list of the subsequences in the sequence (as Seq objects),
using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If maxsplit is omitted, all
splits are made.
For consistency with the ``split`` method of Python strings, any
whitespace (tabs, spaces, newlines) is a separator if sep is None, the
default value
e.g.
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_aa = my_rna.translate()
>>> my_aa
Seq('VMAIVMGR*KGAR*L')
>>> for pep in my_aa.split("*"):
... pep
Seq('VMAIVMGR')
Seq('KGAR')
Seq('L')
>>> for pep in my_aa.split("*", 1):
... pep
Seq('VMAIVMGR')
Seq('KGAR*L')
See also the rsplit method, which splits the sequence starting from the
end:
>>> for pep in my_aa.rsplit("*", 1):
... pep
Seq('VMAIVMGR*KGAR')
Seq('L')
"""
if isinstance(sep, _SeqAbstractBaseClass):
sep = bytes(sep)
elif isinstance(sep, str):
sep = sep.encode("ASCII")
return [Seq(part) for part in self._data.split(sep, maxsplit)]
def rsplit(self, sep=None, maxsplit=-1):
"""Return a list of subsequences by splitting the sequence from the right.
Return a list of the subsequences in the sequence (as Seq objects),
using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If maxsplit is omitted, all
splits are made.
For consistency with the ``rsplit`` method of Python strings, any
whitespace (tabs, spaces, newlines) is a separator if sep is None, the
default value
e.g.
>>> from Bio.Seq import Seq
>>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
>>> my_aa = my_rna.translate()
>>> my_aa
Seq('VMAIVMGR*KGAR*L')
>>> for pep in my_aa.rsplit("*"):
... pep
Seq('VMAIVMGR')
Seq('KGAR')
Seq('L')
>>> for pep in my_aa.rsplit("*", 1):
... pep
Seq('VMAIVMGR*KGAR')
Seq('L')
See also the split method, which splits the sequence starting from the
beginning:
>>> for pep in my_aa.split("*", 1):
... pep
Seq('VMAIVMGR')
Seq('KGAR*L')
"""
if isinstance(sep, _SeqAbstractBaseClass):
sep = bytes(sep)
elif isinstance(sep, str):
sep = sep.encode("ASCII")
return [Seq(part) for part in self._data.rsplit(sep, maxsplit)]
def strip(self, chars=None, inplace=False):
"""Return a sequence object with leading and trailing ends stripped.
With default arguments, leading and trailing whitespace is removed:
>>> seq = Seq(" ACGT ")
>>> seq.strip()
Seq('ACGT')
>>> seq
Seq(' ACGT ')
If ``chars`` is given and not ``None``, remove characters in ``chars``
instead. The order of the characters to be removed is not important:
>>> Seq("ACGTACGT").strip("TGCA")
Seq('')
A copy of the sequence is returned if ``inplace`` is ``False`` (the
default value). If ``inplace`` is ``True``, the sequence is stripped
in-place and returned.
>>> seq = MutableSeq(" ACGT ")
>>> seq.strip(inplace=False)
MutableSeq('ACGT')
>>> seq
MutableSeq(' ACGT ')
>>> seq.strip(inplace=True)
MutableSeq('ACGT')
>>> seq
MutableSeq('ACGT')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if ``strip``
is called on a ``Seq`` object with ``inplace=True``.
See also the lstrip and rstrip methods.
"""
if isinstance(chars, _SeqAbstractBaseClass):
chars = bytes(chars)
elif isinstance(chars, str):
chars = chars.encode("ASCII")
try:
data = self._data.strip(chars)
except TypeError:
raise TypeError(
"argument must be None or a string, Seq, MutableSeq, or bytes-like object"
) from None
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
else:
return self.__class__(data)
def lstrip(self, chars=None, inplace=False):
"""Return a sequence object with leading and trailing ends stripped.
With default arguments, leading whitespace is removed:
>>> seq = Seq(" ACGT ")
>>> seq.lstrip()
Seq('ACGT ')
>>> seq
Seq(' ACGT ')
If ``chars`` is given and not ``None``, remove characters in ``chars``
from the leading end instead. The order of the characters to be removed
is not important:
>>> Seq("ACGACGTTACG").lstrip("GCA")
Seq('TTACG')
A copy of the sequence is returned if ``inplace`` is ``False`` (the
default value). If ``inplace`` is ``True``, the sequence is stripped
in-place and returned.
>>> seq = MutableSeq(" ACGT ")
>>> seq.lstrip(inplace=False)
MutableSeq('ACGT ')
>>> seq
MutableSeq(' ACGT ')
>>> seq.lstrip(inplace=True)
MutableSeq('ACGT ')
>>> seq
MutableSeq('ACGT ')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``lstrip`` is called on a ``Seq`` object with ``inplace=True``.
See also the strip and rstrip methods.
"""
if isinstance(chars, _SeqAbstractBaseClass):
chars = bytes(chars)
elif isinstance(chars, str):
chars = chars.encode("ASCII")
try:
data = self._data.lstrip(chars)
except TypeError:
raise TypeError(
"argument must be None or a string, Seq, MutableSeq, or bytes-like object"
) from None
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
else:
return self.__class__(data)
def rstrip(self, chars=None, inplace=False):
"""Return a sequence object with trailing ends stripped.
With default arguments, trailing whitespace is removed:
>>> seq = Seq(" ACGT ")
>>> seq.rstrip()
Seq(' ACGT')
>>> seq
Seq(' ACGT ')
If ``chars`` is given and not ``None``, remove characters in ``chars``
from the trailing end instead. The order of the characters to be
removed is not important:
>>> Seq("ACGACGTTACG").rstrip("GCA")
Seq('ACGACGTT')
A copy of the sequence is returned if ``inplace`` is ``False`` (the
default value). If ``inplace`` is ``True``, the sequence is stripped
in-place and returned.
>>> seq = MutableSeq(" ACGT ")
>>> seq.rstrip(inplace=False)
MutableSeq(' ACGT')
>>> seq
MutableSeq(' ACGT ')
>>> seq.rstrip(inplace=True)
MutableSeq(' ACGT')
>>> seq
MutableSeq(' ACGT')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``rstrip`` is called on a ``Seq`` object with ``inplace=True``.
See also the strip and lstrip methods.
"""
if isinstance(chars, _SeqAbstractBaseClass):
chars = bytes(chars)
elif isinstance(chars, str):
chars = chars.encode("ASCII")
try:
data = self._data.rstrip(chars)
except TypeError:
raise TypeError(
"argument must be None or a string, Seq, MutableSeq, or bytes-like object"
) from None
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
else:
return self.__class__(data)
def upper(self, inplace=False):
"""Return the sequence in upper case.
An upper-case copy of the sequence is returned if inplace is False,
the default value:
>>> from Bio.Seq import Seq, MutableSeq
>>> my_seq = Seq("VHLTPeeK*")
>>> my_seq
Seq('VHLTPeeK*')
>>> my_seq.lower()
Seq('vhltpeek*')
>>> my_seq.upper()
Seq('VHLTPEEK*')
>>> my_seq
Seq('VHLTPeeK*')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("VHLTPeeK*")
>>> my_seq
MutableSeq('VHLTPeeK*')
>>> my_seq.lower()
MutableSeq('vhltpeek*')
>>> my_seq.upper()
MutableSeq('VHLTPEEK*')
>>> my_seq
MutableSeq('VHLTPeeK*')
>>> my_seq.lower(inplace=True)
MutableSeq('vhltpeek*')
>>> my_seq
MutableSeq('vhltpeek*')
>>> my_seq.upper(inplace=True)
MutableSeq('VHLTPEEK*')
>>> my_seq
MutableSeq('VHLTPEEK*')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``upper`` is called on a ``Seq`` object with ``inplace=True``.
See also the ``lower`` method.
"""
data = self._data.upper()
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
else:
return self.__class__(data)
def lower(self, inplace=False):
"""Return the sequence in lower case.
An lower-case copy of the sequence is returned if inplace is False,
the default value:
>>> from Bio.Seq import Seq, MutableSeq
>>> my_seq = Seq("VHLTPeeK*")
>>> my_seq
Seq('VHLTPeeK*')
>>> my_seq.lower()
Seq('vhltpeek*')
>>> my_seq.upper()
Seq('VHLTPEEK*')
>>> my_seq
Seq('VHLTPeeK*')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("VHLTPeeK*")
>>> my_seq
MutableSeq('VHLTPeeK*')
>>> my_seq.lower()
MutableSeq('vhltpeek*')
>>> my_seq.upper()
MutableSeq('VHLTPEEK*')
>>> my_seq
MutableSeq('VHLTPeeK*')
>>> my_seq.lower(inplace=True)
MutableSeq('vhltpeek*')
>>> my_seq
MutableSeq('vhltpeek*')
>>> my_seq.upper(inplace=True)
MutableSeq('VHLTPEEK*')
>>> my_seq
MutableSeq('VHLTPEEK*')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``lower`` is called on a ``Seq`` object with ``inplace=True``.
See also the ``upper`` method.
"""
data = self._data.lower()
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
else:
return self.__class__(data)
def isupper(self):
"""Return True if all ASCII characters in data are uppercase.
If there are no cased characters, the method returns False.
"""
return self._data.isupper()
def islower(self):
"""Return True if all ASCII characters in data are lowercase.
If there are no cased characters, the method returns False.
"""
return self._data.islower()
def translate(
self, table="Standard", stop_symbol="*", to_stop=False, cds=False, gap="-"
):
"""Turn a nucleotide sequence into a protein sequence by creating a new sequence object.
This method will translate DNA or RNA sequences. It should not
be used on protein sequences as any result will be biologically
meaningless.
Arguments:
- table - Which codon table to use? This can be either a name
(string), an NCBI identifier (integer), or a CodonTable
object (useful for non-standard genetic codes). This
defaults to the "Standard" table.
- stop_symbol - Single character string, what to use for
terminators. This defaults to the asterisk, "*".
- to_stop - Boolean, defaults to False meaning do a full
translation continuing on past any stop codons (translated as the
specified stop_symbol). If True, translation is terminated at
the first in frame stop codon (and the stop_symbol is not
appended to the returned protein sequence).
- cds - Boolean, indicates this is a complete CDS. If True,
this checks the sequence starts with a valid alternative start
codon (which will be translated as methionine, M), that the
sequence length is a multiple of three, and that there is a
single in frame stop codon at the end (this will be excluded
from the protein sequence, regardless of the to_stop option).
If these tests fail, an exception is raised.
- gap - Single character string to denote symbol used for gaps.
Defaults to the minus sign.
A ``Seq`` object is returned if ``translate`` is called on a ``Seq``
object; a ``MutableSeq`` object is returned if ``translate`` is called
pn a ``MutableSeq`` object.
e.g. Using the standard table:
>>> coding_dna = Seq("GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
>>> coding_dna.translate()
Seq('VAIVMGR*KGAR*')
>>> coding_dna.translate(stop_symbol="@")
Seq('VAIVMGR@KGAR@')
>>> coding_dna.translate(to_stop=True)
Seq('VAIVMGR')
Now using NCBI table 2, where TGA is not a stop codon:
>>> coding_dna.translate(table=2)
Seq('VAIVMGRWKGAR*')
>>> coding_dna.translate(table=2, to_stop=True)
Seq('VAIVMGRWKGAR')
In fact, GTG is an alternative start codon under NCBI table 2, meaning
this sequence could be a complete CDS:
>>> coding_dna.translate(table=2, cds=True)
Seq('MAIVMGRWKGAR')
It isn't a valid CDS under NCBI table 1, due to both the start codon
and also the in frame stop codons:
>>> coding_dna.translate(table=1, cds=True)
Traceback (most recent call last):
...
Bio.Data.CodonTable.TranslationError: First codon 'GTG' is not a start codon
If the sequence has no in-frame stop codon, then the to_stop argument
has no effect:
>>> coding_dna2 = Seq("TTGGCCATTGTAATGGGCCGC")
>>> coding_dna2.translate()
Seq('LAIVMGR')
>>> coding_dna2.translate(to_stop=True)
Seq('LAIVMGR')
NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
or a stop codon. These are translated as "X". Any invalid codon
(e.g. "TA?" or "T-A") will throw a TranslationError.
NOTE - This does NOT behave like the python string's translate
method. For that use str(my_seq).translate(...) instead
"""
try:
data = str(self)
except UndefinedSequenceError:
# translating an undefined sequence yields an undefined
# sequence with the length divided by 3
n = len(self)
if n % 3 != 0:
warnings.warn(
"Partial codon, len(sequence) not a multiple of three. "
"This may become an error in future.",
BiopythonWarning,
)
return Seq(None, n // 3)
return self.__class__(
_translate_str(str(self), table, stop_symbol, to_stop, cds, gap=gap)
)
def complement(self, inplace=None):
"""Return the complement as a DNA sequence.
>>> Seq("CGA").complement()
Seq('GCT')
Any U in the sequence is treated as a T:
>>> Seq("CGAUT").complement(inplace=False)
Seq('GCTAA')
In contrast, ``complement_rna`` returns an RNA sequence:
>>> Seq("CGAUT").complement_rna()
Seq('GCUAA')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> my_seq
MutableSeq('CGA')
>>> my_seq.complement(inplace=False)
MutableSeq('GCT')
>>> my_seq
MutableSeq('CGA')
>>> my_seq.complement(inplace=True)
MutableSeq('GCT')
>>> my_seq
MutableSeq('GCT')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``complement_rna`` is called on a ``Seq`` object with ``inplace=True``.
"""
ttable = _dna_complement_table
try:
if inplace is None:
# deprecated
if isinstance(self._data, bytearray): # MutableSeq
warnings.warn(
"mutable_seq.complement() will change in the near "
"future and will no longer change the sequence in-"
"place by default. Please use\n"
"\n"
"mutable_seq.complement(inplace=True)\n"
"\n"
"if you want to continue to use this method to change "
"a mutable sequence in-place.",
BiopythonDeprecationWarning,
)
inplace = True
if isinstance(self._data, _PartiallyDefinedSequenceData):
for seq in self._data._data.values():
if b"U" in seq or b"u" in seq:
warnings.warn(
"seq.complement() will change in the near "
"future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"seq.complement_rna()\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
for seq in self._data._data.values():
if b"t" in seq or b"T" in seq:
raise ValueError("Mixed RNA/DNA found")
ttable = _rna_complement_table
break
elif b"U" in self._data or b"u" in self._data:
warnings.warn(
"seq.complement() will change in the near future to "
"always return DNA nucleotides only. "
"Please use\n"
"\n"
"seq.complement_rna()\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if b"t" in self._data or b"T" in self._data:
raise ValueError("Mixed RNA/DNA found")
ttable = _rna_complement_table
data = self._data.translate(ttable)
except UndefinedSequenceError:
# complement of an undefined sequence is an undefined sequence
# of the same length
return self
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
return self.__class__(data)
def complement_rna(self, inplace=False):
"""Return the complement as an RNA sequence.
>>> Seq("CGA").complement_rna()
Seq('GCU')
Any T in the sequence is treated as a U:
>>> Seq("CGAUT").complement_rna()
Seq('GCUAA')
In contrast, ``complement`` returns a DNA sequence by default:
>>> Seq("CGA").complement()
Seq('GCT')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> my_seq
MutableSeq('CGA')
>>> my_seq.complement_rna()
MutableSeq('GCU')
>>> my_seq
MutableSeq('CGA')
>>> my_seq.complement_rna(inplace=True)
MutableSeq('GCU')
>>> my_seq
MutableSeq('GCU')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``complement_rna`` is called on a ``Seq`` object with ``inplace=True``.
"""
try:
data = self._data.translate(_rna_complement_table)
except UndefinedSequenceError:
# complement of an undefined sequence is an undefined sequence
# of the same length
return self
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
return self.__class__(data)
def reverse_complement(self, inplace=None):
"""Return the reverse complement as a DNA sequence.
>>> Seq("CGA").reverse_complement(inplace=False)
Seq('TCG')
Any U in the sequence is treated as a T:
>>> Seq("CGAUT").reverse_complement(inplace=False)
Seq('AATCG')
In contrast, ``reverse_complement_rna`` returns an RNA sequence:
>>> Seq("CGA").reverse_complement_rna()
Seq('UCG')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> my_seq
MutableSeq('CGA')
>>> my_seq.reverse_complement(inplace=False)
MutableSeq('TCG')
>>> my_seq
MutableSeq('CGA')
>>> my_seq.reverse_complement(inplace=True)
MutableSeq('TCG')
>>> my_seq
MutableSeq('TCG')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``reverse_complement`` is called on a ``Seq`` object with
``inplace=True``.
"""
try:
if inplace is None:
# deprecated
if isinstance(self._data, bytearray): # MutableSeq
warnings.warn(
"mutable_seq.reverse_complement() will change in the "
"near future and will no longer change the sequence in-"
"place by default. Please use\n"
"\n"
"mutable_seq.reverse_complement(inplace=True)\n"
"\n"
"if you want to continue to use this method to change "
"a mutable sequence in-place.",
BiopythonDeprecationWarning,
)
inplace = True
else:
inplace = False
if isinstance(self._data, _PartiallyDefinedSequenceData):
for seq in self._data._data.values():
if b"U" in seq or b"u" in seq:
warnings.warn(
"seq.reverse_complement() will change in the near "
"future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"seq.reverse_complement_rna()\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
for seq in self._data._data.values():
if b"t" in seq or b"T" in seq:
raise ValueError("Mixed RNA/DNA found")
return self.reverse_complement_rna(inplace=inplace)
elif b"U" in self._data or b"u" in self._data:
warnings.warn(
"seq.reverse_complement() will change in the near "
"future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"seq.reverse_complement_rna()\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if b"t" in self._data or b"T" in self._data:
raise ValueError("Mixed RNA/DNA found")
return self.reverse_complement_rna(inplace=inplace)
data = self._data.translate(_dna_complement_table)
except UndefinedSequenceError:
# reverse complement of an undefined sequence is an undefined sequence
# of the same length
return self
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[::-1] = data
return self
return self.__class__(data[::-1])
def reverse_complement_rna(self, inplace=False):
"""Return the reverse complement as an RNA sequence.
>>> Seq("CGA").reverse_complement_rna()
Seq('UCG')
Any T in the sequence is treated as a U:
>>> Seq("CGAUT").reverse_complement_rna()
Seq('AAUCG')
In contrast, ``reverse_complement`` returns a DNA sequence:
>>> Seq("CGA").reverse_complement(inplace=False)
Seq('TCG')
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> my_seq
MutableSeq('CGA')
>>> my_seq.reverse_complement_rna()
MutableSeq('UCG')
>>> my_seq
MutableSeq('CGA')
>>> my_seq.reverse_complement_rna(inplace=True)
MutableSeq('UCG')
>>> my_seq
MutableSeq('UCG')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``reverse_complement_rna`` is called on a ``Seq`` object with
``inplace=True``.
"""
try:
data = self._data.translate(_rna_complement_table)
except UndefinedSequenceError:
# reverse complement of an undefined sequence is an undefined sequence
# of the same length
return self
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[::-1] = data
return self
return self.__class__(data[::-1])
def transcribe(self, inplace=False):
"""Transcribe a DNA sequence into RNA and return the RNA sequence as a new Seq object.
>>> from Bio.Seq import Seq
>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
>>> coding_dna
Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
>>> coding_dna.transcribe()
Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
The sequence is modified in-place and returned if inplace is True:
>>> sequence = MutableSeq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
>>> sequence
MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
>>> sequence.transcribe()
MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
>>> sequence
MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
>>> sequence.transcribe(inplace=True)
MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
>>> sequence
MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``transcribe`` is called on a ``Seq`` object with ``inplace=True``.
Trying to transcribe an RNA sequence has no effect.
If you have a nucleotide sequence which might be DNA or RNA
(or even a mixture), calling the transcribe method will ensure
any T becomes U.
Trying to transcribe a protein sequence will replace any
T for Threonine with U for Selenocysteine, which has no
biologically plausible rational.
>>> from Bio.Seq import Seq
>>> my_protein = Seq("MAIVMGRT")
>>> my_protein.transcribe()
Seq('MAIVMGRU')
"""
data = self._data.replace(b"T", b"U").replace(b"t", b"u")
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
return self.__class__(data)
def back_transcribe(self, inplace=False):
"""Return the DNA sequence from an RNA sequence by creating a new Seq object.
>>> from Bio.Seq import Seq
>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")
>>> messenger_rna
Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
>>> messenger_rna.back_transcribe()
Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
The sequence is modified in-place and returned if inplace is True:
>>> sequence = MutableSeq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")
>>> sequence
MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
>>> sequence.back_transcribe()
MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
>>> sequence
MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
>>> sequence.back_transcribe(inplace=True)
MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
>>> sequence
MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``transcribe`` is called on a ``Seq`` object with ``inplace=True``.
Trying to back-transcribe DNA has no effect, If you have a nucleotide
sequence which might be DNA or RNA (or even a mixture), calling the
back-transcribe method will ensure any U becomes T.
Trying to back-transcribe a protein sequence will replace any U for
Selenocysteine with T for Threonine, which is biologically meaningless.
>>> from Bio.Seq import Seq
>>> my_protein = Seq("MAIVMGRU")
>>> my_protein.back_transcribe()
Seq('MAIVMGRT')
"""
data = self._data.replace(b"U", b"T").replace(b"u", b"t")
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
return self.__class__(data)
def join(self, other):
"""Return a merge of the sequences in other, spaced by the sequence from self.
Accepts a Seq object, MutableSeq object, or string (and iterates over
the letters), or an iterable containing Seq, MutableSeq, or string
objects. These arguments will be concatenated with the calling sequence
as the spacer:
>>> concatenated = Seq('NNNNN').join([Seq("AAA"), Seq("TTT"), Seq("PPP")])
>>> concatenated
Seq('AAANNNNNTTTNNNNNPPP')
Joining the letters of a single sequence:
>>> Seq('NNNNN').join(Seq("ACGT"))
Seq('ANNNNNCNNNNNGNNNNNT')
>>> Seq('NNNNN').join("ACGT")
Seq('ANNNNNCNNNNNGNNNNNT')
"""
if isinstance(other, _SeqAbstractBaseClass):
return self.__class__(str(self).join(str(other)))
elif isinstance(other, str):
return self.__class__(str(self).join(other))
from Bio.SeqRecord import SeqRecord # Lazy to avoid circular imports
if isinstance(other, SeqRecord):
raise TypeError("Iterable cannot be a SeqRecord")
for c in other:
if isinstance(c, SeqRecord):
raise TypeError("Iterable cannot contain SeqRecords")
elif not isinstance(c, (str, _SeqAbstractBaseClass)):
raise TypeError(
"Input must be an iterable of Seq objects, MutableSeq objects, or strings"
)
return self.__class__(str(self).join([str(_) for _ in other]))
def replace(self, old, new, inplace=False):
"""Return a copy with all occurrences of subsequence old replaced by new.
>>> s = Seq("ACGTAACCGGTT")
>>> t = s.replace("AC", "XYZ")
>>> s
Seq('ACGTAACCGGTT')
>>> t
Seq('XYZGTAXYZCGGTT')
For mutable sequences, passing inplace=True will modify the sequence in place:
>>> m = MutableSeq("ACGTAACCGGTT")
>>> t = m.replace("AC", "XYZ")
>>> m
MutableSeq('ACGTAACCGGTT')
>>> t
MutableSeq('XYZGTAXYZCGGTT')
>>> m = MutableSeq("ACGTAACCGGTT")
>>> t = m.replace("AC", "XYZ", inplace=True)
>>> m
MutableSeq('XYZGTAXYZCGGTT')
>>> t
MutableSeq('XYZGTAXYZCGGTT')
As ``Seq`` objects are immutable, a ``TypeError`` is raised if
``replace`` is called on a ``Seq`` object with ``inplace=True``.
"""
if isinstance(old, _SeqAbstractBaseClass):
old = bytes(old)
elif isinstance(old, str):
old = old.encode("ASCII")
if isinstance(new, _SeqAbstractBaseClass):
new = bytes(new)
elif isinstance(new, str):
new = new.encode("ASCII")
data = self._data.replace(old, new)
if inplace:
if not isinstance(self._data, bytearray):
raise TypeError("Sequence is immutable")
self._data[:] = data
return self
return self.__class__(data)
@property
def defined(self):
"""Return True if the sequence is defined, False if undefined or partially defined.
Zero-length sequences are always considered to be defined.
"""
if isinstance(self._data, (bytes, bytearray)):
return True
else:
return self._data.defined
@property
def defined_ranges(self):
"""Return a tuple of the ranges where the sequence contents is defined.
The return value has the format ((start1, end1), (start2, end2), ...).
"""
if isinstance(self._data, (bytes, bytearray)):
length = len(self)
if length > 0:
return ((0, length),)
else:
return ()
else:
return self._data.defined_ranges
class Seq(_SeqAbstractBaseClass):
"""Read-only sequence object (essentially a string with biological methods).
Like normal python strings, our basic sequence object is immutable.
This prevents you from doing my_seq[5] = "A" for example, but does allow
Seq objects to be used as dictionary keys.
The Seq object provides a number of string like methods (such as count,
find, split and strip).
The Seq object also provides some biological methods, such as complement,
reverse_complement, transcribe, back_transcribe and translate (which are
not applicable to protein sequences).
"""
def __init__(self, data, length=None):
"""Create a Seq object.
Arguments:
- data - Sequence, required (string)
- length - Sequence length, used only if data is None or a dictionary (integer)
You will typically use Bio.SeqIO to read in sequences from files as
SeqRecord objects, whose sequence will be exposed as a Seq object via
the seq property.
However, you can also create a Seq object directly:
>>> from Bio.Seq import Seq
>>> my_seq = Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF")
>>> my_seq
Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF')
>>> print(my_seq)
MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF
To create a Seq object with for a sequence of known length but
unknown sequence contents, use None for the data argument and pass
the sequence length for the length argument. Trying to access the
sequence contents of a Seq object created in this way will raise
an UndefinedSequenceError:
>>> my_undefined_sequence = Seq(None, 20)
>>> my_undefined_sequence
Seq(None, length=20)
>>> len(my_undefined_sequence)
20
>>> print(my_undefined_sequence)
Traceback (most recent call last):
...
Bio.Seq.UndefinedSequenceError: Sequence content is undefined
If the sequence contents is known for parts of the sequence only, use
a dictionary for the data argument to pass the known sequence segments:
>>> my_partially_defined_sequence = Seq({3: "ACGT"}, 10)
>>> my_partially_defined_sequence
Seq({3: 'ACGT'}, length=10)
>>> len(my_partially_defined_sequence)
10
>>> print(my_partially_defined_sequence)
Traceback (most recent call last):
...
Bio.Seq.UndefinedSequenceError: Sequence content is only partially defined
>>> my_partially_defined_sequence[3:7]
Seq('ACGT')
>>> print(my_partially_defined_sequence[3:7])
ACGT
"""
if data is None:
if length is None:
raise ValueError("length must not be None if data is None")
elif length == 0:
self._data = b""
elif length < 0:
raise ValueError("length must not be negative.")
else:
self._data = _UndefinedSequenceData(length)
elif isinstance(data, (bytes, SequenceDataAbstractBaseClass)):
self._data = data
elif isinstance(data, (bytearray, _SeqAbstractBaseClass)):
self._data = bytes(data)
elif isinstance(data, str):
self._data = bytes(data, encoding="ASCII")
elif isinstance(data, dict):
if length is None:
raise ValueError("length must not be None if data is a dictionary")
elif length == 0:
self._data = b""
elif length < 0:
raise ValueError("length must not be negative.")
else:
end = -1
starts = sorted(data.keys())
_data = {}
for start in starts:
seq = data[start]
if isinstance(seq, str):
seq = bytes(seq, encoding="ASCII")
else:
try:
seq = bytes(seq)
except Exception:
raise ValueError("Expected bytes-like objects or strings")
if start < end:
raise ValueError("Sequence data are overlapping.")
elif start == end:
_data[current] += seq # noqa: F821
else:
_data[start] = seq
current = start
end = start + len(seq)
if end > length:
raise ValueError(
"Provided sequence data extend beyond sequence length."
)
elif end == length and current == 0:
# sequence is fully defined
self._data = _data[current]
else:
self._data = _PartiallyDefinedSequenceData(length, _data)
else:
raise TypeError(
"data should be a string, bytes, bytearray, Seq, or MutableSeq object"
)
def __hash__(self):
"""Hash of the sequence as a string for comparison.
See Seq object comparison documentation (method ``__eq__`` in
particular) as this has changed in Biopython 1.65. Older versions
would hash on object identity.
"""
return hash(self._data)
def ungap(self, gap="-"):
"""Return a copy of the sequence without the gap character(s) (DEPRECATED).
The gap character now defaults to the minus sign, and can only
be specified via the method argument. This is no longer possible
via the sequence's alphabet (as was possible up to Biopython 1.77):
>>> from Bio.Seq import Seq
>>> my_dna = Seq("-ATA--TGAAAT-TTGAAAA")
>>> my_dna
Seq('-ATA--TGAAAT-TTGAAAA')
>>> my_dna.ungap("-")
Seq('ATATGAAATTTGAAAA')
This method is DEPRECATED; please use my_dna.replace(gap, "") instead.
"""
warnings.warn(
"""\
myseq.ungap(gap) is deprecated; please use myseq.replace(gap, "") instead.""",
BiopythonDeprecationWarning,
)
if not gap:
raise ValueError("Gap character required.")
elif len(gap) != 1 or not isinstance(gap, str):
raise ValueError(f"Unexpected gap character, {gap!r}")
return self.replace(gap, b"")
class MutableSeq(_SeqAbstractBaseClass):
"""An editable sequence object.
Unlike normal python strings and our basic sequence object (the Seq class)
which are immutable, the MutableSeq lets you edit the sequence in place.
However, this means you cannot use a MutableSeq object as a dictionary key.
>>> from Bio.Seq import MutableSeq
>>> my_seq = MutableSeq("ACTCGTCGTCG")
>>> my_seq
MutableSeq('ACTCGTCGTCG')
>>> my_seq[5]
'T'
>>> my_seq[5] = "A"
>>> my_seq
MutableSeq('ACTCGACGTCG')
>>> my_seq[5]
'A'
>>> my_seq[5:8] = "NNN"
>>> my_seq
MutableSeq('ACTCGNNNTCG')
>>> len(my_seq)
11
Note that the MutableSeq object does not support as many string-like
or biological methods as the Seq object.
"""
def __init__(self, data):
"""Create a MutableSeq object."""
if isinstance(data, bytearray):
self._data = data
elif isinstance(data, bytes):
self._data = bytearray(data)
elif isinstance(data, str):
self._data = bytearray(data, "ASCII")
elif isinstance(data, MutableSeq):
self._data = data._data[:] # Take a copy
elif isinstance(data, Seq):
# Make no assumptions about the Seq subclass internal storage
self._data = bytearray(bytes(data))
else:
raise TypeError(
"data should be a string, bytearray object, Seq object, or a "
"MutableSeq object"
)
def __setitem__(self, index, value):
"""Set a subsequence of single letter via value parameter.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq[0] = 'T'
>>> my_seq
MutableSeq('TCTCGACGTCG')
"""
if isinstance(index, numbers.Integral):
# Replacing a single letter with a new string
self._data[index] = ord(value)
else:
# Replacing a sub-sequence
if isinstance(value, MutableSeq):
self._data[index] = value._data
elif isinstance(value, Seq):
self._data[index] = bytes(value)
elif isinstance(value, str):
self._data[index] = value.encode("ASCII")
else:
raise TypeError(f"received unexpected type '{type(value).__name__}'")
def __delitem__(self, index):
"""Delete a subsequence of single letter.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> del my_seq[0]
>>> my_seq
MutableSeq('CTCGACGTCG')
"""
# Could be deleting a single letter, or a slice
del self._data[index]
def append(self, c):
"""Add a subsequence to the mutable sequence object.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq.append('A')
>>> my_seq
MutableSeq('ACTCGACGTCGA')
No return value.
"""
self._data.append(ord(c.encode("ASCII")))
def insert(self, i, c):
"""Add a subsequence to the mutable sequence object at a given index.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq.insert(0,'A')
>>> my_seq
MutableSeq('AACTCGACGTCG')
>>> my_seq.insert(8,'G')
>>> my_seq
MutableSeq('AACTCGACGGTCG')
No return value.
"""
self._data.insert(i, ord(c.encode("ASCII")))
def pop(self, i=(-1)):
"""Remove a subsequence of a single letter at given index.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq.pop()
'G'
>>> my_seq
MutableSeq('ACTCGACGTC')
>>> my_seq.pop()
'C'
>>> my_seq
MutableSeq('ACTCGACGT')
Returns the last character of the sequence.
"""
c = self._data[i]
del self._data[i]
return chr(c)
def remove(self, item):
"""Remove a subsequence of a single letter from mutable sequence.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq.remove('C')
>>> my_seq
MutableSeq('ATCGACGTCG')
>>> my_seq.remove('A')
>>> my_seq
MutableSeq('TCGACGTCG')
No return value.
"""
codepoint = ord(item)
try:
self._data.remove(codepoint)
except ValueError:
raise ValueError("value not found in MutableSeq") from None
def reverse(self):
"""Modify the mutable sequence to reverse itself.
No return value.
"""
self._data.reverse()
def extend(self, other):
"""Add a sequence to the original mutable sequence object.
>>> my_seq = MutableSeq('ACTCGACGTCG')
>>> my_seq.extend('A')
>>> my_seq
MutableSeq('ACTCGACGTCGA')
>>> my_seq.extend('TTT')
>>> my_seq
MutableSeq('ACTCGACGTCGATTT')
No return value.
"""
if isinstance(other, MutableSeq):
self._data.extend(other._data)
elif isinstance(other, Seq):
self._data.extend(bytes(other))
elif isinstance(other, str):
self._data.extend(other.encode("ASCII"))
else:
raise TypeError("expected a string, Seq or MutableSeq")
class UndefinedSequenceError(ValueError):
"""Sequence contents is undefined."""
class _UndefinedSequenceData(SequenceDataAbstractBaseClass):
"""Stores the length of a sequence with an undefined sequence contents (PRIVATE).
Objects of this class can be used to create a Seq object to represent
sequences with a known length, but an unknown sequence contents.
Calling __len__ returns the sequence length, calling __getitem__ raises an
UndefinedSequenceError except for requests of zero size, for which it
returns an empty bytes object.
"""
__slots__ = ("_length",)
def __init__(self, length):
"""Initialize the object with the sequence length.
The calling function is responsible for ensuring that the length is
greater than zero.
"""
self._length = length
super().__init__()
def __getitem__(self, key):
if isinstance(key, slice):
start, end, step = key.indices(self._length)
size = len(range(start, end, step))
if size == 0:
return b""
return _UndefinedSequenceData(size)
else:
raise UndefinedSequenceError("Sequence content is undefined")
def __len__(self):
return self._length
def __bytes__(self):
raise UndefinedSequenceError("Sequence content is undefined")
def __add__(self, other):
length = len(self) + len(other)
try:
other = bytes(other)
except UndefinedSequenceError:
if isinstance(other, _UndefinedSequenceData):
return _UndefinedSequenceData(length)
else:
return NotImplemented
# _PartiallyDefinedSequenceData.__radd__ will handle this
else:
data = {len(self): other}
return _PartiallyDefinedSequenceData(length, data)
def __radd__(self, other):
data = {0: bytes(other)}
length = len(other) + len(self)
return _PartiallyDefinedSequenceData(length, data)
def upper(self):
"""Return an upper case copy of the sequence."""
# An upper case copy of an undefined sequence is an undefined
# sequence of the same length
return _UndefinedSequenceData(self._length)
def lower(self):
"""Return a lower case copy of the sequence."""
# A lower case copy of an undefined sequence is an undefined
# sequence of the same length
return _UndefinedSequenceData(self._length)
def isupper(self):
"""Return True if all ASCII characters in data are uppercase.
If there are no cased characters, the method returns False.
"""
# Character case is irrelevant for an undefined sequence
raise UndefinedSequenceError("Sequence content is undefined")
def islower(self):
"""Return True if all ASCII characters in data are lowercase.
If there are no cased characters, the method returns False.
"""
# Character case is irrelevant for an undefined sequence
raise UndefinedSequenceError("Sequence content is undefined")
def replace(self, old, new):
"""Return a copy with all occurrences of substring old replaced by new."""
# Replacing substring old by new in an undefined sequence will result
# in an undefined sequence of the same length, if old and new have the
# number of characters.
if len(old) != len(new):
raise UndefinedSequenceError("Sequence content is undefined")
return _UndefinedSequenceData(self._length)
@property
def defined(self):
"""Return False, as the sequence is not defined and has a non-zero length."""
return False
@property
def defined_ranges(self):
"""Return a tuple of the ranges where the sequence contents is defined.
As the sequence contents of an _UndefinedSequenceData object is fully
undefined, the return value is always an empty tuple.
"""
return ()
class _PartiallyDefinedSequenceData(SequenceDataAbstractBaseClass):
"""Stores the length of a sequence with an undefined sequence contents (PRIVATE).
Objects of this class can be used to create a Seq object to represent
sequences with a known length, but with a sequence contents that is only
partially known.
Calling __len__ returns the sequence length, calling __getitem__ returns
the sequence contents if known, otherwise an UndefinedSequenceError is
raised.
"""
__slots__ = ("_length", "_data")
def __init__(self, length, data):
"""Initialize with the sequence length and defined sequence segments.
The calling function is responsible for ensuring that the length is
greater than zero.
"""
self._length = length
self._data = data
super().__init__()
def __getitem__(self, key):
if isinstance(key, slice):
start, end, step = key.indices(self._length)
size = len(range(start, end, step))
if size == 0:
return b""
data = {}
for s, d in self._data.items():
indices = range(-s, -s + self._length)[key]
e = indices.stop
if step > 0:
if e <= 0:
continue
if indices.start < 0:
s = indices.start % step
else:
s = indices.start
else: # step < 0
if e < 0:
e = None
end = len(d) - 1
if indices.start > end:
s = end + (indices.start - end) % step
else:
s = indices.start
if s < 0:
continue
start = (s - indices.start) // step
d = d[s:e:step]
if d:
data[start] = d
if len(data) == 0: # Fully undefined sequence
return _UndefinedSequenceData(size)
# merge adjacent sequence segments
end = -1
previous = None # not needed here, but it keeps flake happy
items = data.items()
data = {}
for start, seq in items:
if end == start:
data[previous] += seq
else:
data[start] = seq
previous = start
end = start + len(seq)
if len(data) == 1:
seq = data.get(0)
if seq is not None and len(seq) == size:
return seq # Fully defined sequence; return bytes
if step < 0:
# use this after we drop Python 3.7:
# data = {start: data[start] for start in reversed(data)}
# use this as long as we support Python 3.7:
data = {start: data[start] for start in reversed(list(data.keys()))}
return _PartiallyDefinedSequenceData(size, data)
elif self._length <= key:
raise IndexError("sequence index out of range")
else:
for start, seq in self._data.items():
if start <= key and key < start + len(seq):
return seq[key - start]
raise UndefinedSequenceError("Sequence at position %d is undefined" % key)
def __len__(self):
return self._length
def __bytes__(self):
raise UndefinedSequenceError("Sequence content is only partially defined")
def __add__(self, other):
length = len(self) + len(other)
data = dict(self._data)
items = list(self._data.items())
start, seq = items[-1]
end = start + len(seq)
try:
other = bytes(other)
except UndefinedSequenceError:
if isinstance(other, _UndefinedSequenceData):
pass
elif isinstance(other, _PartiallyDefinedSequenceData):
other_items = list(other._data.items())
if end == len(self):
other_start, other_seq = other_items.pop(0)
if other_start == 0:
data[start] += other_seq
else:
data[len(self) + other_start] = other_seq
for other_start, other_seq in other_items:
data[len(self) + other_start] = other_seq
else:
if end == len(self):
data[start] += other
else:
data[len(self)] = other
return _PartiallyDefinedSequenceData(length, data)
def __radd__(self, other):
length = len(other) + len(self)
try:
other = bytes(other)
except UndefinedSequenceError:
data = {len(other) + start: seq for start, seq in self._data.items()}
else:
data = {0: other}
items = list(self._data.items())
start, seq = items.pop(0)
if start == 0:
data[0] += seq
else:
data[len(other) + start] = seq
for start, seq in items:
data[len(other) + start] = seq
return _PartiallyDefinedSequenceData(length, data)
def __mul__(self, other):
length = self._length
items = self._data.items()
data = {}
end = -1
previous = None # not needed here, but it keeps flake happy
for i in range(other):
for start, seq in items:
start += i * length
if end == start:
data[previous] += seq
else:
data[start] = seq
previous = start
end = start + len(seq)
return _PartiallyDefinedSequenceData(length * other, data)
def upper(self):
"""Return an upper case copy of the sequence."""
data = {start: seq.upper() for start, seq in self._data.items()}
return _PartiallyDefinedSequenceData(self._length, data)
def lower(self):
"""Return a lower case copy of the sequence."""
data = {start: seq.lower() for start, seq in self._data.items()}
return _PartiallyDefinedSequenceData(self._length, data)
def isupper(self):
"""Return True if all ASCII characters in data are uppercase.
If there are no cased characters, the method returns False.
"""
# Character case is irrelevant for an undefined sequence
raise UndefinedSequenceError("Sequence content is only partially defined")
def islower(self):
"""Return True if all ASCII characters in data are lowercase.
If there are no cased characters, the method returns False.
"""
# Character case is irrelevant for an undefined sequence
raise UndefinedSequenceError("Sequence content is only partially defined")
def translate(self, table, delete=b""):
"""Return a copy with each character mapped by the given translation table.
table
Translation table, which must be a bytes object of length 256.
All characters occurring in the optional argument delete are removed.
The remaining characters are mapped through the given translation table.
"""
items = self._data.items()
data = {start: seq.translate(table, delete) for start, seq in items}
return _PartiallyDefinedSequenceData(self._length, data)
def replace(self, old, new):
"""Return a copy with all occurrences of substring old replaced by new."""
# Replacing substring old by new in the undefined sequence segments
# will result in an undefined sequence segment of the same length, if
# old and new have the number of characters. If not, an error is raised,
# as the correct start positions cannot be calculated reliably.
if len(old) != len(new):
raise UndefinedSequenceError(
"Sequence content is only partially defined; substring \n"
"replacement cannot be performed reliably"
)
items = self._data.items()
data = {start: seq.replace(old, new) for start, seq in items}
return _PartiallyDefinedSequenceData(self._length, data)
@property
def defined(self):
"""Return False, as the sequence is not fully defined and has a non-zero length."""
return False
@property
def defined_ranges(self):
"""Return a tuple of the ranges where the sequence contents is defined.
The return value has the format ((start1, end1), (start2, end2), ...).
"""
return tuple((start, start + len(seq)) for start, seq in self._data.items())
# The transcribe, backward_transcribe, and translate functions are
# user-friendly versions of the corresponding Seq/MutableSeq methods.
# The functions work both on Seq objects, and on strings.
def transcribe(dna):
"""Transcribe a DNA sequence into RNA.
If given a string, returns a new string object.
Given a Seq or MutableSeq, returns a new Seq object.
e.g.
>>> transcribe("ACTGN")
'ACUGN'
"""
if isinstance(dna, Seq):
return dna.transcribe()
elif isinstance(dna, MutableSeq):
return Seq(dna).transcribe()
else:
return dna.replace("T", "U").replace("t", "u")
def back_transcribe(rna):
"""Return the RNA sequence back-transcribed into DNA.
If given a string, returns a new string object.
Given a Seq or MutableSeq, returns a new Seq object.
e.g.
>>> back_transcribe("ACUGN")
'ACTGN'
"""
if isinstance(rna, Seq):
return rna.back_transcribe()
elif isinstance(rna, MutableSeq):
return Seq(rna).back_transcribe()
else:
return rna.replace("U", "T").replace("u", "t")
def _translate_str(
sequence, table, stop_symbol="*", to_stop=False, cds=False, pos_stop="X", gap=None
):
"""Translate nucleotide string into a protein string (PRIVATE).
Arguments:
- sequence - a string
- table - Which codon table to use? This can be either a name (string),
an NCBI identifier (integer), or a CodonTable object (useful for
non-standard genetic codes). This defaults to the "Standard" table.
- stop_symbol - a single character string, what to use for terminators.
- to_stop - boolean, should translation terminate at the first
in frame stop codon? If there is no in-frame stop codon
then translation continues to the end.
- pos_stop - a single character string for a possible stop codon
(e.g. TAN or NNN)
- cds - Boolean, indicates this is a complete CDS. If True, this
checks the sequence starts with a valid alternative start
codon (which will be translated as methionine, M), that the
sequence length is a multiple of three, and that there is a
single in frame stop codon at the end (this will be excluded
from the protein sequence, regardless of the to_stop option).
If these tests fail, an exception is raised.
- gap - Single character string to denote symbol used for gaps.
Defaults to None.
Returns a string.
e.g.
>>> from Bio.Data import CodonTable
>>> table = CodonTable.ambiguous_dna_by_id[1]
>>> _translate_str("AAA", table)
'K'
>>> _translate_str("TAR", table)
'*'
>>> _translate_str("TAN", table)
'X'
>>> _translate_str("TAN", table, pos_stop="@")
'@'
>>> _translate_str("TA?", table)
Traceback (most recent call last):
...
Bio.Data.CodonTable.TranslationError: Codon 'TA?' is invalid
In a change to older versions of Biopython, partial codons are now
always regarded as an error (previously only checked if cds=True)
and will trigger a warning (likely to become an exception in a
future release).
If **cds=True**, the start and stop codons are checked, and the start
codon will be translated at methionine. The sequence must be an
while number of codons.
>>> _translate_str("ATGCCCTAG", table, cds=True)
'MP'
>>> _translate_str("AAACCCTAG", table, cds=True)
Traceback (most recent call last):
...
Bio.Data.CodonTable.TranslationError: First codon 'AAA' is not a start codon
>>> _translate_str("ATGCCCTAGCCCTAG", table, cds=True)
Traceback (most recent call last):
...
Bio.Data.CodonTable.TranslationError: Extra in frame stop codon 'TAG' found.
"""
try:
table_id = int(table)
except ValueError:
# Assume it's a table name
# The same table can be used for RNA or DNA
try:
codon_table = CodonTable.ambiguous_generic_by_name[table]
except KeyError:
if isinstance(table, str):
raise ValueError(
"The Bio.Seq translate methods and function DO NOT "
"take a character string mapping table like the python "
"string object's translate method. "
"Use str(my_seq).translate(...) instead."
) from None
else:
raise TypeError("table argument must be integer or string") from None
except (AttributeError, TypeError):
# Assume it's a CodonTable object
if isinstance(table, CodonTable.CodonTable):
codon_table = table
else:
raise ValueError("Bad table argument") from None
else:
# Assume it's a table ID
# The same table can be used for RNA or DNA
codon_table = CodonTable.ambiguous_generic_by_id[table_id]
sequence = sequence.upper()
amino_acids = []
forward_table = codon_table.forward_table
stop_codons = codon_table.stop_codons
if codon_table.nucleotide_alphabet is not None:
valid_letters = set(codon_table.nucleotide_alphabet.upper())
else:
# Assume the worst case, ambiguous DNA or RNA:
valid_letters = set(
IUPACData.ambiguous_dna_letters.upper()
+ IUPACData.ambiguous_rna_letters.upper()
)
n = len(sequence)
# Check for tables with 'ambiguous' (dual-coding) stop codons:
dual_coding = [c for c in stop_codons if c in forward_table]
if dual_coding:
c = dual_coding[0]
if to_stop:
raise ValueError(
"You cannot use 'to_stop=True' with this table as it contains"
f" {len(dual_coding)} codon(s) which can be both STOP and an"
f" amino acid (e.g. '{c}' -> '{forward_table[c]}' or STOP)."
)
warnings.warn(
f"This table contains {len(dual_coding)} codon(s) which code(s) for"
f" both STOP and an amino acid (e.g. '{c}' -> '{forward_table[c]}'"
" or STOP). Such codons will be translated as amino acid.",
BiopythonWarning,
)
if cds:
if str(sequence[:3]).upper() not in codon_table.start_codons:
raise CodonTable.TranslationError(
f"First codon '{sequence[:3]}' is not a start codon"
)
if n % 3 != 0:
raise CodonTable.TranslationError(
f"Sequence length {n} is not a multiple of three"
)
if str(sequence[-3:]).upper() not in stop_codons:
raise CodonTable.TranslationError(
f"Final codon '{sequence[-3:]}' is not a stop codon"
)
# Don't translate the stop symbol, and manually translate the M
sequence = sequence[3:-3]
n -= 6
amino_acids = ["M"]
elif n % 3 != 0:
warnings.warn(
"Partial codon, len(sequence) not a multiple of three. "
"Explicitly trim the sequence or add trailing N before "
"translation. This may become an error in future.",
BiopythonWarning,
)
if gap is not None:
if not isinstance(gap, str):
raise TypeError("Gap character should be a single character string.")
elif len(gap) > 1:
raise ValueError("Gap character should be a single character string.")
for i in range(0, n - n % 3, 3):
codon = sequence[i : i + 3]
try:
amino_acids.append(forward_table[codon])
except (KeyError, CodonTable.TranslationError):
if codon in codon_table.stop_codons:
if cds:
raise CodonTable.TranslationError(
f"Extra in frame stop codon '{codon}' found."
) from None
if to_stop:
break
amino_acids.append(stop_symbol)
elif valid_letters.issuperset(set(codon)):
# Possible stop codon (e.g. NNN or TAN)
amino_acids.append(pos_stop)
elif gap is not None and codon == gap * 3:
# Gapped translation
amino_acids.append(gap)
else:
raise CodonTable.TranslationError(
f"Codon '{codon}' is invalid"
) from None
return "".join(amino_acids)
def translate(
sequence, table="Standard", stop_symbol="*", to_stop=False, cds=False, gap=None
):
"""Translate a nucleotide sequence into amino acids.
If given a string, returns a new string object. Given a Seq or
MutableSeq, returns a Seq object.
Arguments:
- table - Which codon table to use? This can be either a name
(string), an NCBI identifier (integer), or a CodonTable object
(useful for non-standard genetic codes). Defaults to the "Standard"
table.
- stop_symbol - Single character string, what to use for any
terminators, defaults to the asterisk, "*".
- to_stop - Boolean, defaults to False meaning do a full
translation continuing on past any stop codons
(translated as the specified stop_symbol). If
True, translation is terminated at the first in
frame stop codon (and the stop_symbol is not
appended to the returned protein sequence).
- cds - Boolean, indicates this is a complete CDS. If True, this
checks the sequence starts with a valid alternative start
codon (which will be translated as methionine, M), that the
sequence length is a multiple of three, and that there is a
single in frame stop codon at the end (this will be excluded
from the protein sequence, regardless of the to_stop option).
If these tests fail, an exception is raised.
- gap - Single character string to denote symbol used for gaps.
Defaults to None.
A simple string example using the default (standard) genetic code:
>>> coding_dna = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG"
>>> translate(coding_dna)
'VAIVMGR*KGAR*'
>>> translate(coding_dna, stop_symbol="@")
'VAIVMGR@KGAR@'
>>> translate(coding_dna, to_stop=True)
'VAIVMGR'
Now using NCBI table 2, where TGA is not a stop codon:
>>> translate(coding_dna, table=2)
'VAIVMGRWKGAR*'
>>> translate(coding_dna, table=2, to_stop=True)
'VAIVMGRWKGAR'
In fact this example uses an alternative start codon valid under NCBI
table 2, GTG, which means this example is a complete valid CDS which
when translated should really start with methionine (not valine):
>>> translate(coding_dna, table=2, cds=True)
'MAIVMGRWKGAR'
Note that if the sequence has no in-frame stop codon, then the to_stop
argument has no effect:
>>> coding_dna2 = "GTGGCCATTGTAATGGGCCGC"
>>> translate(coding_dna2)
'VAIVMGR'
>>> translate(coding_dna2, to_stop=True)
'VAIVMGR'
NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
or a stop codon. These are translated as "X". Any invalid codon
(e.g. "TA?" or "T-A") will throw a TranslationError.
It will however translate either DNA or RNA.
NOTE - Since version 1.71 Biopython contains codon tables with 'ambiguous
stop codons'. These are stop codons with unambiguous sequence but which
have a context dependent coding as STOP or as amino acid. With these tables
'to_stop' must be False (otherwise a ValueError is raised). The dual
coding codons will always be translated as amino acid, except for
'cds=True', where the last codon will be translated as STOP.
>>> coding_dna3 = "ATGGCACGGAAGTGA"
>>> translate(coding_dna3)
'MARK*'
>>> translate(coding_dna3, table=27) # Table 27: TGA -> STOP or W
'MARKW'
It will however raise a BiopythonWarning (not shown).
>>> translate(coding_dna3, table=27, cds=True)
'MARK'
>>> translate(coding_dna3, table=27, to_stop=True)
Traceback (most recent call last):
...
ValueError: You cannot use 'to_stop=True' with this table ...
"""
if isinstance(sequence, Seq):
return sequence.translate(table, stop_symbol, to_stop, cds)
elif isinstance(sequence, MutableSeq):
# Return a Seq object
return Seq(sequence).translate(table, stop_symbol, to_stop, cds)
else:
# Assume it's a string, return a string
return _translate_str(sequence, table, stop_symbol, to_stop, cds, gap=gap)
def reverse_complement(sequence, inplace=None):
"""Return the reverse complement as a DNA sequence.
If given a string, returns a new string object.
Given a Seq object, returns a new Seq object.
Given a MutableSeq, returns a new MutableSeq object.
Given a SeqRecord object, returns a new SeqRecord object.
>>> my_seq = "CGA"
>>> reverse_complement(my_seq, inplace=False)
'TCG'
>>> my_seq = Seq("CGA")
>>> reverse_complement(my_seq, inplace=False)
Seq('TCG')
>>> my_seq = MutableSeq("CGA")
>>> reverse_complement(my_seq, inplace=False)
MutableSeq('TCG')
>>> my_seq
MutableSeq('CGA')
Any U in the sequence is treated as a T:
>>> reverse_complement(Seq("CGAUT"), inplace=False)
Seq('AATCG')
In contrast, ``reverse_complement_rna`` returns an RNA sequence:
>>> reverse_complement_rna(Seq("CGAUT"))
Seq('AAUCG')
Supports and lower- and upper-case characters, and unambiguous and
ambiguous nucleotides. All other characters are not converted:
>>> reverse_complement("ACGTUacgtuXYZxyz", inplace=False)
'zrxZRXaacgtAACGT'
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> reverse_complement(my_seq, inplace=True)
MutableSeq('TCG')
>>> my_seq
MutableSeq('TCG')
As strings and ``Seq`` objects are immutable, a ``TypeError`` is
raised if ``reverse_complement`` is called on a ``Seq`` object with
``inplace=True``.
"""
from Bio.SeqRecord import SeqRecord # Lazy to avoid circular imports
if inplace is None:
# deprecated
if isinstance(sequence, Seq):
if b"U" in sequence._data or b"u" in sequence._data:
warnings.warn(
"reverse_complement(sequence) will change in the "
"near future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"reverse_complement_rna(sequence)\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if b"T" in sequence._data or b"t" in sequence._data:
raise ValueError("Mixed RNA/DNA found")
return sequence.reverse_complement_rna()
elif isinstance(sequence, MutableSeq):
# Return a Seq
# Don't use the MutableSeq reverse_complement method as it is
# 'in place'.
warnings.warn(
"reverse_complement(mutable_seq) will change in the near "
"future to return a MutableSeq object instead of a Seq object.",
BiopythonDeprecationWarning,
)
return Seq(sequence).reverse_complement()
else: # str
if "U" in sequence or "u" in sequence:
warnings.warn(
"reverse_complement(sequence) will change in the "
"near future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"reverse_complement_rna(sequence)\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if "T" in sequence or "t" in sequence:
raise ValueError("Mixed RNA/DNA found")
sequence = sequence.encode("ASCII")
sequence = sequence.translate(_rna_complement_table)
return sequence.decode("ASCII")[::-1]
if isinstance(sequence, (Seq, MutableSeq)):
return sequence.reverse_complement(inplace)
if isinstance(sequence, SeqRecord):
if inplace:
raise TypeError("SeqRecords are immutable")
return sequence.reverse_complement()
# Assume it's a string.
if inplace:
raise TypeError("strings are immutable")
sequence = sequence.encode("ASCII")
sequence = sequence.translate(_dna_complement_table)
sequence = sequence.decode("ASCII")
return sequence[::-1]
def reverse_complement_rna(sequence, inplace=False):
"""Return the reverse complement as an RNA sequence.
If given a string, returns a new string object.
Given a Seq object, returns a new Seq object.
Given a MutableSeq, returns a new MutableSeq object.
Given a SeqRecord object, returns a new SeqRecord object.
>>> my_seq = "CGA"
>>> reverse_complement_rna(my_seq)
'UCG'
>>> my_seq = Seq("CGA")
>>> reverse_complement_rna(my_seq)
Seq('UCG')
>>> my_seq = MutableSeq("CGA")
>>> reverse_complement_rna(my_seq)
MutableSeq('UCG')
>>> my_seq
MutableSeq('CGA')
Any T in the sequence is treated as a U:
>>> reverse_complement_rna(Seq("CGAUT"))
Seq('AAUCG')
In contrast, ``reverse_complement`` returns a DNA sequence:
>>> reverse_complement(Seq("CGAUT"), inplace=False)
Seq('AATCG')
Supports and lower- and upper-case characters, and unambiguous and
ambiguous nucleotides. All other characters are not converted:
>>> reverse_complement_rna("ACGTUacgtuXYZxyz")
'zrxZRXaacguAACGU'
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> reverse_complement_rna(my_seq, inplace=True)
MutableSeq('UCG')
>>> my_seq
MutableSeq('UCG')
As strings and ``Seq`` objects are immutable, a ``TypeError`` is
raised if ``reverse_complement`` is called on a ``Seq`` object with
``inplace=True``.
"""
from Bio.SeqRecord import SeqRecord # Lazy to avoid circular imports
if isinstance(sequence, (Seq, MutableSeq)):
return sequence.reverse_complement_rna(inplace)
if isinstance(sequence, SeqRecord):
if inplace:
raise TypeError("SeqRecords are immutable")
return sequence.reverse_complement_rna()
# Assume it's a string.
if inplace:
raise TypeError("strings are immutable")
sequence = sequence.encode("ASCII")
sequence = sequence.translate(_rna_complement_table)
sequence = sequence.decode("ASCII")
return sequence[::-1]
def complement(sequence, inplace=None):
"""Return the complement as a DNA sequence.
If given a string, returns a new string object.
Given a Seq object, returns a new Seq object.
Given a MutableSeq, returns a new MutableSeq object.
Given a SeqRecord object, returns a new SeqRecord object.
>>> my_seq = "CGA"
>>> complement(my_seq, inplace=False)
'GCT'
>>> my_seq = Seq("CGA")
>>> complement(my_seq, inplace=False)
Seq('GCT')
>>> my_seq = MutableSeq("CGA")
>>> complement(my_seq, inplace=False)
MutableSeq('GCT')
>>> my_seq
MutableSeq('CGA')
Any U in the sequence is treated as a T:
>>> complement(Seq("CGAUT"), inplace=False)
Seq('GCTAA')
In contrast, ``complement_rna`` returns an RNA sequence:
>>> complement_rna(Seq("CGAUT"))
Seq('GCUAA')
Supports and lower- and upper-case characters, and unambiguous and
ambiguous nucleotides. All other characters are not converted:
>>> complement("ACGTUacgtuXYZxyz", inplace=False)
'TGCAAtgcaaXRZxrz'
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> complement(my_seq, inplace=True)
MutableSeq('GCT')
>>> my_seq
MutableSeq('GCT')
As strings and ``Seq`` objects are immutable, a ``TypeError`` is
raised if ``reverse_complement`` is called on a ``Seq`` object with
``inplace=True``.
"""
from Bio.SeqRecord import SeqRecord # Lazy to avoid circular imports
if inplace is None:
# deprecated
if isinstance(sequence, Seq):
# Return a Seq
if b"U" in sequence._data or b"u" in sequence._data:
warnings.warn(
"complement(sequence) will change in the near "
"future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"complement_rna(sequence)\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if b"T" in sequence._data or b"t" in sequence._data:
raise ValueError("Mixed RNA/DNA found")
return sequence.complement_rna()
elif isinstance(sequence, MutableSeq):
# Return a Seq
# Don't use the MutableSeq reverse_complement method as it is
# 'in place'.
warnings.warn(
"complement(mutable_seq) will change in the near future"
"to return a MutableSeq object instead of a Seq object.",
BiopythonDeprecationWarning,
)
return Seq(sequence).complement()
else:
if "U" in sequence or "u" in sequence:
warnings.warn(
"complement(sequence) will change in the near "
"future to always return DNA nucleotides only. "
"Please use\n"
"\n"
"complement_rna(sequence)\n"
"\n"
"if you want to receive an RNA sequence instead.",
BiopythonDeprecationWarning,
)
if "T" in sequence or "t" in sequence:
raise ValueError("Mixed RNA/DNA found")
ttable = _rna_complement_table
sequence = sequence.encode("ASCII")
sequence = sequence.translate(ttable)
return sequence.decode("ASCII")
if isinstance(sequence, (Seq, MutableSeq)):
return sequence.complement(inplace)
if isinstance(sequence, SeqRecord):
if inplace:
raise TypeError("SeqRecords are immutable")
return sequence.complement()
# Assume it's a string.
if inplace:
raise TypeError("strings are immutable")
sequence = sequence.encode("ASCII")
sequence = sequence.translate(_dna_complement_table)
return sequence.decode("ASCII")
def complement_rna(sequence, inplace=False):
"""Return the complement as an RNA sequence.
If given a string, returns a new string object.
Given a Seq object, returns a new Seq object.
Given a MutableSeq, returns a new MutableSeq object.
Given a SeqRecord object, returns a new SeqRecord object.
>>> my_seq = "CGA"
>>> complement_rna(my_seq)
'GCU'
>>> my_seq = Seq("CGA")
>>> complement_rna(my_seq)
Seq('GCU')
>>> my_seq = MutableSeq("CGA")
>>> complement_rna(my_seq)
MutableSeq('GCU')
>>> my_seq
MutableSeq('CGA')
Any T in the sequence is treated as a U:
>>> complement_rna(Seq("CGAUT"))
Seq('GCUAA')
In contrast, ``complement`` returns a DNA sequence:
>>> complement(Seq("CGAUT"),inplace=False)
Seq('GCTAA')
Supports and lower- and upper-case characters, and unambiguous and
ambiguous nucleotides. All other characters are not converted:
>>> complement_rna("ACGTUacgtuXYZxyz")
'UGCAAugcaaXRZxrz'
The sequence is modified in-place and returned if inplace is True:
>>> my_seq = MutableSeq("CGA")
>>> complement(my_seq, inplace=True)
MutableSeq('GCT')
>>> my_seq
MutableSeq('GCT')
As strings and ``Seq`` objects are immutable, a ``TypeError`` is
raised if ``reverse_complement`` is called on a ``Seq`` object with
``inplace=True``.
"""
from Bio.SeqRecord import SeqRecord # Lazy to avoid circular imports
if isinstance(sequence, (Seq, MutableSeq)):
return sequence.complement_rna(inplace)
if isinstance(sequence, SeqRecord):
if inplace:
raise TypeError("SeqRecords are immutable")
return sequence.complement_rna()
# Assume it's a string.
if inplace:
raise TypeError("strings are immutable")
sequence = sequence.encode("ASCII")
sequence = sequence.translate(_rna_complement_table)
return sequence.decode("ASCII")
def _test():
"""Run the Bio.Seq module's doctests (PRIVATE)."""
print("Running doctests...")
import doctest
doctest.testmod(optionflags=doctest.IGNORE_EXCEPTION_DETAIL)
print("Done")
if __name__ == "__main__":
_test()