Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,137 @@ import logging
|
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
import pdfplumber
|
6 |
-
from langchain.text_splitter import
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
-
from transformers import pipeline
|
|
|
10 |
import re
|
11 |
|
12 |
-
# Setup logging
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
@st.cache_resource(ttl=1800)
|
19 |
def load_embeddings_model():
|
|
|
20 |
try:
|
21 |
return SentenceTransformer("all-MiniLM-L12-v2")
|
22 |
except Exception as e:
|
|
|
23 |
st.error(f"Embedding model error: {str(e)}")
|
24 |
return None
|
25 |
|
26 |
@st.cache_resource(ttl=1800)
|
27 |
def load_qa_pipeline():
|
|
|
28 |
try:
|
|
|
|
|
|
|
|
|
|
|
29 |
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
30 |
except Exception as e:
|
|
|
31 |
st.error(f"QA model error: {str(e)}")
|
32 |
return None
|
33 |
|
34 |
@st.cache_resource(ttl=1800)
|
35 |
def load_summary_pipeline():
|
|
|
36 |
try:
|
37 |
return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150)
|
38 |
except Exception as e:
|
|
|
39 |
st.error(f"Summary model error: {str(e)}")
|
40 |
return None
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
def process_pdf(uploaded_file):
|
45 |
-
|
46 |
-
code_blocks = []
|
47 |
try:
|
48 |
-
|
|
|
|
|
49 |
for page in pdf.pages[:20]:
|
50 |
extracted = page.extract_text(layout=False)
|
51 |
if extracted:
|
@@ -53,248 +141,200 @@ def process_pdf(uploaded_file):
|
|
53 |
for char in page.chars:
|
54 |
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
55 |
code_blocks.append(char['text'])
|
56 |
-
|
57 |
-
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)',
|
58 |
for match in code_matches:
|
59 |
code_blocks.append(match.group().strip())
|
60 |
tables = page.extract_tables()
|
61 |
if tables:
|
62 |
for table in tables:
|
63 |
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
text_chunks = text_splitter.split_text(text)[:50]
|
70 |
code_chunks = text_splitter.split_text(code_text)[:25] if code_text else []
|
71 |
-
|
72 |
embeddings_model = load_embeddings_model()
|
73 |
if not embeddings_model:
|
74 |
return None, None, text, code_text
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
code_vector_store = FAISS.from_embeddings(
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return text_vector_store, code_vector_store, text, code_text
|
83 |
-
|
84 |
except Exception as e:
|
|
|
85 |
st.error(f"PDF error: {str(e)}")
|
86 |
return None, None, "", ""
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
with open(file_path, "rb") as f:
|
113 |
-
t_store, c_store, t_text, c_text = process_pdf(f)
|
114 |
-
combined_text += t_text + "\n"
|
115 |
-
combined_code += c_text + "\n"
|
116 |
-
if t_store:
|
117 |
-
for chunk in t_store.index_to_docstore().values():
|
118 |
-
all_text_chunks.append(chunk)
|
119 |
-
all_text_vectors.append(embeddings_model.encode(chunk))
|
120 |
-
if c_store:
|
121 |
-
for chunk in c_store.index_to_docstore().values():
|
122 |
-
all_code_chunks.append(chunk)
|
123 |
-
all_code_vectors.append(embeddings_model.encode(chunk))
|
124 |
-
elif file_name.lower().endswith(".txt"):
|
125 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
126 |
-
text_content = f.read()
|
127 |
-
combined_text += text_content + "\n"
|
128 |
-
chunks = text_content.split("\n\n")
|
129 |
-
for chunk in chunks:
|
130 |
-
all_text_chunks.append(chunk)
|
131 |
-
all_text_vectors.append(embeddings_model.encode(chunk))
|
132 |
-
|
133 |
-
if all_text_chunks:
|
134 |
-
text_vector_store = FAISS.from_embeddings(zip(all_text_chunks, all_text_vectors), embeddings_model.encode)
|
135 |
-
if all_code_chunks:
|
136 |
-
code_vector_store = FAISS.from_embeddings(zip(all_code_chunks, all_code_vectors), embeddings_model.encode)
|
137 |
-
|
138 |
-
return text_vector_store, code_vector_store, combined_text, combined_code
|
139 |
-
|
140 |
-
# ----------- Streamlit UI -----------
|
141 |
-
|
142 |
-
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
|
143 |
-
|
144 |
-
# Fixed CSS for chat colors
|
145 |
-
st.markdown("""
|
146 |
-
<style>
|
147 |
-
/* Chat container */
|
148 |
-
.chat-container {
|
149 |
-
border: 1px solid #ddd;
|
150 |
-
border-radius: 10px;
|
151 |
-
padding: 10px;
|
152 |
-
height: 60vh;
|
153 |
-
overflow-y: auto;
|
154 |
-
margin-top: 20px;
|
155 |
-
}
|
156 |
-
|
157 |
-
/* Chat bubbles */
|
158 |
-
.stChatMessage {
|
159 |
-
border-radius: 15px;
|
160 |
-
padding: 10px;
|
161 |
-
margin: 5px;
|
162 |
-
max-width: 70%;
|
163 |
-
word-wrap: break-word;
|
164 |
-
}
|
165 |
-
|
166 |
-
/* User message */
|
167 |
-
.user {
|
168 |
-
background-color: #e6f3ff !important;
|
169 |
-
color: #000 !important;
|
170 |
-
align-self: flex-end;
|
171 |
-
text-align: right;
|
172 |
-
}
|
173 |
-
|
174 |
-
/* Assistant message */
|
175 |
-
.assistant {
|
176 |
-
background-color: #f0f0f0 !important;
|
177 |
-
color: #000 !important;
|
178 |
-
text-align: left;
|
179 |
-
}
|
180 |
-
|
181 |
-
/* Dark mode support */
|
182 |
-
body[data-theme="dark"] .user {
|
183 |
-
background-color: #2a2a72 !important;
|
184 |
-
color: #fff !important;
|
185 |
-
}
|
186 |
-
body[data-theme="dark"] .assistant {
|
187 |
-
background-color: #2e2e2e !important;
|
188 |
-
color: #fff !important;
|
189 |
-
}
|
190 |
-
|
191 |
-
/* Buttons */
|
192 |
-
.stButton>button {
|
193 |
-
background-color: #4CAF50;
|
194 |
-
color: white;
|
195 |
-
border: none;
|
196 |
-
padding: 8px 16px;
|
197 |
-
border-radius: 5px;
|
198 |
-
}
|
199 |
-
.stButton>button:hover {
|
200 |
-
background-color: #45a049;
|
201 |
-
}
|
202 |
-
|
203 |
-
/* Preformatted code */
|
204 |
-
pre {
|
205 |
-
background-color: #f8f8f8;
|
206 |
-
padding: 10px;
|
207 |
-
border-radius: 5px;
|
208 |
-
overflow-x: auto;
|
209 |
-
}
|
210 |
-
|
211 |
-
/* Header */
|
212 |
-
.header {
|
213 |
-
background: linear-gradient(90deg, #4CAF50, #81C784);
|
214 |
-
color: white;
|
215 |
-
padding: 10px;
|
216 |
-
border-radius: 5px;
|
217 |
-
text-align: center;
|
218 |
-
}
|
219 |
-
</style>
|
220 |
-
""", unsafe_allow_html=True)
|
221 |
-
|
222 |
-
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
223 |
-
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'.")
|
224 |
-
|
225 |
-
# Session state
|
226 |
-
if "messages" not in st.session_state:
|
227 |
-
st.session_state.messages = []
|
228 |
-
if "text_vector_store" not in st.session_state:
|
229 |
-
st.session_state.text_vector_store = None
|
230 |
-
if "code_vector_store" not in st.session_state:
|
231 |
-
st.session_state.code_vector_store = None
|
232 |
-
if "pdf_text" not in st.session_state:
|
233 |
-
st.session_state.pdf_text = ""
|
234 |
-
if "code_text" not in st.session_state:
|
235 |
-
st.session_state.code_text = ""
|
236 |
-
|
237 |
-
# Preload dataset at start
|
238 |
-
if st.session_state.text_vector_store is None and st.session_state.code_vector_store is None:
|
239 |
-
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = preload_dataset()
|
240 |
-
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
241 |
-
st.info("Preloaded sample dataset loaded for better QA and code retrieval.")
|
242 |
-
|
243 |
-
# PDF upload & buttons
|
244 |
-
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
245 |
-
col1, col2 = st.columns([1,1])
|
246 |
-
with col1:
|
247 |
-
if st.button("Process PDF") and uploaded_file:
|
248 |
-
with st.spinner("Processing PDF..."):
|
249 |
-
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
250 |
-
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
251 |
-
st.success("PDF processed! Ask away or summarize.")
|
252 |
-
st.session_state.messages = []
|
253 |
-
else:
|
254 |
-
st.error("Failed to process PDF.")
|
255 |
-
|
256 |
-
with col2:
|
257 |
-
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
258 |
-
with st.spinner("Summarizing..."):
|
259 |
-
summary_pipeline = load_summary_pipeline()
|
260 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50, separators=["\n\n", "\n", ".", " "])
|
261 |
-
chunks = text_splitter.split_text(st.session_state.pdf_text)[:2]
|
262 |
-
summaries = []
|
263 |
-
for chunk in chunks:
|
264 |
-
summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
265 |
-
summaries.append(summary.strip())
|
266 |
-
combined_summary = " ".join(summaries)
|
267 |
-
st.session_state.messages.append({"role":"assistant","content":combined_summary})
|
268 |
-
st.markdown(combined_summary)
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
with st.chat_message("assistant"):
|
278 |
qa_pipeline = load_qa_pipeline()
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
import pdfplumber
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
10 |
+
from datasets import load_dataset
|
11 |
import re
|
12 |
|
13 |
+
# Setup logging for Spaces
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
+
# Lazy load models
|
|
|
18 |
@st.cache_resource(ttl=1800)
|
19 |
def load_embeddings_model():
|
20 |
+
logger.info("Loading embeddings model")
|
21 |
try:
|
22 |
return SentenceTransformer("all-MiniLM-L12-v2")
|
23 |
except Exception as e:
|
24 |
+
logger.error(f"Embeddings load error: {str(e)}")
|
25 |
st.error(f"Embedding model error: {str(e)}")
|
26 |
return None
|
27 |
|
28 |
@st.cache_resource(ttl=1800)
|
29 |
def load_qa_pipeline():
|
30 |
+
logger.info("Loading QA pipeline")
|
31 |
try:
|
32 |
+
dataset = load_and_prepare_dataset()
|
33 |
+
if dataset:
|
34 |
+
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
35 |
+
if fine_tuned_pipeline:
|
36 |
+
return fine_tuned_pipeline
|
37 |
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
38 |
except Exception as e:
|
39 |
+
logger.error(f"QA model load error: {str(e)}")
|
40 |
st.error(f"QA model error: {str(e)}")
|
41 |
return None
|
42 |
|
43 |
@st.cache_resource(ttl=1800)
|
44 |
def load_summary_pipeline():
|
45 |
+
logger.info("Loading summary pipeline")
|
46 |
try:
|
47 |
return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150)
|
48 |
except Exception as e:
|
49 |
+
logger.error(f"Summary model load error: {str(e)}")
|
50 |
st.error(f"Summary model error: {str(e)}")
|
51 |
return None
|
52 |
|
53 |
+
# Load and prepare dataset (e.g., SQuAD)
|
54 |
+
@st.cache_resource(ttl=3600)
|
55 |
+
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
|
56 |
+
logger.info(f"Loading dataset: {dataset_name}")
|
57 |
+
try:
|
58 |
+
dataset = load_dataset(dataset_name, split="train")
|
59 |
+
dataset = dataset.shuffle(seed=42).select(range(max_samples))
|
60 |
+
|
61 |
+
def preprocess(examples):
|
62 |
+
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])]
|
63 |
+
targets = examples['answers']['text']
|
64 |
+
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]}
|
65 |
+
|
66 |
+
dataset = dataset.map(preprocess, batched=True)
|
67 |
+
return dataset
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"Dataset load error: {str(e)}")
|
70 |
+
return None
|
71 |
+
|
72 |
+
# Fine-tune QA model
|
73 |
+
@st.cache_resource(ttl=3600)
|
74 |
+
def fine_tune_qa_model(dataset):
|
75 |
+
logger.info("Starting fine-tuning")
|
76 |
+
try:
|
77 |
+
model_name = "google/flan-t5-small"
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
80 |
+
|
81 |
+
def tokenize_function(examples):
|
82 |
+
model_inputs = tokenizer(examples['input_text'], max_length=512, truncation=True, padding="max_length")
|
83 |
+
labels = tokenizer(examples['target_text'], max_length=128, truncation=True, padding="max_length")
|
84 |
+
model_inputs["labels"] = labels["input_ids"]
|
85 |
+
return model_inputs
|
86 |
+
|
87 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
88 |
+
|
89 |
+
training_args = TrainingArguments(
|
90 |
+
output_dir="./fine_tuned_model",
|
91 |
+
num_train_epochs=1,
|
92 |
+
per_device_train_batch_size=4,
|
93 |
+
save_steps=500,
|
94 |
+
logging_steps=100,
|
95 |
+
evaluation_strategy="no",
|
96 |
+
learning_rate=5e-5,
|
97 |
+
fp16=False,
|
98 |
+
)
|
99 |
+
|
100 |
+
trainer = Trainer(
|
101 |
+
model=model,
|
102 |
+
args=training_args,
|
103 |
+
train_dataset=tokenized_dataset,
|
104 |
+
)
|
105 |
+
trainer.train()
|
106 |
+
|
107 |
+
model.save_pretrained("./fine_tuned_model")
|
108 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
109 |
+
logger.info("Fine-tuning complete")
|
110 |
+
return pipeline("text2text-generation", model="./fine_tuned_model", tokenizer="./fine_tuned_model", max_length=300)
|
111 |
+
except Exception as e:
|
112 |
+
logger.error(f"Fine-tuning error: {str(e)}")
|
113 |
+
return None
|
114 |
+
|
115 |
+
# Augment vector store with dataset
|
116 |
+
def augment_vector_store(vector_store, dataset_name="squad", max_samples=500):
|
117 |
+
logger.info(f"Augmenting vector store with dataset: {dataset_name}")
|
118 |
+
try:
|
119 |
+
dataset = load_dataset(dataset_name, split="train").select(range(max_samples))
|
120 |
+
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])]
|
121 |
+
embeddings_model = load_embeddings_model()
|
122 |
+
if embeddings_model and vector_store:
|
123 |
+
embeddings = embeddings_model.encode(chunks)
|
124 |
+
vector_store.add_embeddings(zip(chunks, embeddings))
|
125 |
+
return vector_store
|
126 |
+
except Exception as e:
|
127 |
+
logger.error(f"Vector store augmentation error: {str(e)}")
|
128 |
+
return vector_store
|
129 |
|
130 |
+
# Process PDF with enhanced extraction
|
131 |
def process_pdf(uploaded_file):
|
132 |
+
logger.info("Processing PDF with enhanced extraction")
|
|
|
133 |
try:
|
134 |
+
text = ""
|
135 |
+
code_blocks = []
|
136 |
+
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
137 |
for page in pdf.pages[:20]:
|
138 |
extracted = page.extract_text(layout=False)
|
139 |
if extracted:
|
|
|
141 |
for char in page.chars:
|
142 |
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
143 |
code_blocks.append(char['text'])
|
144 |
+
code_text = page.extract_text()
|
145 |
+
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE)
|
146 |
for match in code_matches:
|
147 |
code_blocks.append(match.group().strip())
|
148 |
tables = page.extract_tables()
|
149 |
if tables:
|
150 |
for table in tables:
|
151 |
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
152 |
+
for obj in page.extract_words():
|
153 |
+
if obj.get('size', 0) > 12:
|
154 |
+
text += f"\n{obj['text']}\n"
|
155 |
|
156 |
+
code_text = "\n".join(code_blocks).strip()
|
157 |
+
if not text:
|
158 |
+
raise ValueError("No text extracted from PDF")
|
159 |
+
|
160 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=100, keep_separator=True)
|
161 |
text_chunks = text_splitter.split_text(text)[:50]
|
162 |
code_chunks = text_splitter.split_text(code_text)[:25] if code_text else []
|
163 |
+
|
164 |
embeddings_model = load_embeddings_model()
|
165 |
if not embeddings_model:
|
166 |
return None, None, text, code_text
|
167 |
+
|
168 |
+
text_vector_store = FAISS.from_embeddings(
|
169 |
+
zip(text_chunks, [embeddings_model.encode(chunk) for chunk in text_chunks]),
|
170 |
+
embeddings_model.encode
|
171 |
+
) if text_chunks else None
|
172 |
+
code_vector_store = FAISS.from_embeddings(
|
173 |
+
zip(code_chunks, [embeddings_model.encode(chunk) for chunk in code_chunks]),
|
174 |
+
embeddings_model.encode
|
175 |
+
) if code_chunks else None
|
176 |
+
|
177 |
+
# Augment text vector store with dataset
|
178 |
+
if text_vector_store:
|
179 |
+
text_vector_store = augment_vector_store(text_vector_store)
|
180 |
+
|
181 |
+
logger.info("PDF processed successfully with enhanced extraction")
|
182 |
return text_vector_store, code_vector_store, text, code_text
|
|
|
183 |
except Exception as e:
|
184 |
+
logger.error(f"PDF processing error: {str(e)}")
|
185 |
st.error(f"PDF error: {str(e)}")
|
186 |
return None, None, "", ""
|
187 |
|
188 |
+
# Summarize PDF
|
189 |
+
def summarize_pdf(text):
|
190 |
+
logger.info("Generating summary")
|
191 |
+
try:
|
192 |
+
summary_pipeline = load_summary_pipeline()
|
193 |
+
if not summary_pipeline:
|
194 |
+
return "Summary model unavailable."
|
195 |
+
|
196 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=500, chunk_overlap=50)
|
197 |
+
chunks = text_splitter.split_text(text)[:2]
|
198 |
+
summaries = []
|
199 |
+
|
200 |
+
for chunk in chunks:
|
201 |
+
summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
202 |
+
summaries.append(summary.strip())
|
203 |
+
|
204 |
+
combined_summary = " ".join(summaries)
|
205 |
+
if len(combined_summary.split()) > 150:
|
206 |
+
combined_summary = " ".join(combined_summary.split()[:150])
|
207 |
+
logger.info("Summary generated")
|
208 |
+
return f"Sure, here's a concise summary of the PDF:\n{combined_summary}"
|
209 |
+
except Exception as e:
|
210 |
+
logger.error(f"Summary error: {str(e)}")
|
211 |
+
return f"Oops, something went wrong summarizing: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
# Answer question with improved response
|
214 |
+
def answer_question(text_vector_store, code_vector_store, query):
|
215 |
+
logger.info(f"Processing query: {query}")
|
216 |
+
try:
|
217 |
+
if not text_vector_store and not code_vector_store:
|
218 |
+
return "Please upload a PDF first!"
|
219 |
+
|
|
|
220 |
qa_pipeline = load_qa_pipeline()
|
221 |
+
if not qa_pipeline:
|
222 |
+
return "Sorry, the QA model is unavailable right now."
|
223 |
+
|
224 |
+
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
|
225 |
+
if is_code_query and code_vector_store:
|
226 |
+
return f"Here's the code from the PDF:\n```python\n{st.session_state.code_text}\n```"
|
227 |
+
|
228 |
+
vector_store = text_vector_store
|
229 |
+
if not vector_store:
|
230 |
+
return "No relevant content found for your query."
|
231 |
+
|
232 |
+
docs = vector_store.similarity_search(query, k=5)
|
233 |
+
context = "\n".join(doc.page_content for doc in docs)
|
234 |
+
prompt = f"Context: {context}\nQuestion: {query}\nProvide a detailed, accurate answer based on the context, prioritizing relevant information. Respond as a helpful assistant:"
|
235 |
+
response = qa_pipeline(prompt)[0]['generated_text']
|
236 |
+
logger.info("Answer generated")
|
237 |
+
return f"Got it! Here's a detailed answer:\n{response.strip()}"
|
238 |
+
except Exception as e:
|
239 |
+
logger.error(f"Query error: {str(e)}")
|
240 |
+
return f"Sorry, something went wrong: {str(e)}"
|
241 |
+
|
242 |
+
# Streamlit UI
|
243 |
+
try:
|
244 |
+
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
|
245 |
+
st.markdown("""
|
246 |
+
<style>
|
247 |
+
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
|
248 |
+
.sidebar { background-color: #f8f9fa; padding: 10px; border-radius: 5px; }
|
249 |
+
.chat-container { border: 1px solid #ddd; border-radius: 10px; padding: 10px; height: 60vh; overflow-y: auto; margin-top: 20px; }
|
250 |
+
.stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; max-width: 70%; }
|
251 |
+
.user { background-color: #e6f3ff; align-self: flex-end; }
|
252 |
+
.assistant { background-color: #f0f0f0; }
|
253 |
+
.dark .user { background-color: #2a2a72; color: #fff; }
|
254 |
+
.dark .assistant { background-color: #2e2e2e; color: #fff; }
|
255 |
+
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 8px 16px; border-radius: 5px; }
|
256 |
+
.stButton>button:hover { background-color: #45a049; }
|
257 |
+
pre { background-color: #f8f8f8; padding: 10px; border-radius: 5px; overflow-x: auto; }
|
258 |
+
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 10px; border-radius: 5px; text-align: center; }
|
259 |
+
</style>
|
260 |
+
""", unsafe_allow_html=True)
|
261 |
+
|
262 |
+
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
263 |
+
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!")
|
264 |
+
|
265 |
+
# Initialize session state
|
266 |
+
if "messages" not in st.session_state:
|
267 |
+
st.session_state.messages = []
|
268 |
+
if "text_vector_store" not in st.session_state:
|
269 |
+
st.session_state.text_vector_store = None
|
270 |
+
if "code_vector_store" not in st.session_state:
|
271 |
+
st.session_state.code_vector_store = None
|
272 |
+
if "pdf_text" not in st.session_state:
|
273 |
+
st.session_state.pdf_text = ""
|
274 |
+
if "code_text" not in st.session_state:
|
275 |
+
st.session_state.code_text = ""
|
276 |
+
|
277 |
+
# Sidebar with toggle and dataset options
|
278 |
+
with st.sidebar:
|
279 |
+
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
|
280 |
+
theme = st.radio("Theme", ["Light", "Dark"], index=0)
|
281 |
+
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0)
|
282 |
+
if st.button("Fine-Tune Model"):
|
283 |
+
with st.spinner("Fine-tuning model..."):
|
284 |
+
dataset = load_and_prepare_dataset(dataset_name=dataset_name)
|
285 |
+
if dataset:
|
286 |
+
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
287 |
+
if fine_tuned_pipeline:
|
288 |
+
st.success("Model fine-tuned successfully!")
|
289 |
+
else:
|
290 |
+
st.error("Fine-tuning failed.")
|
291 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
292 |
+
|
293 |
+
# PDF upload and processing
|
294 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
295 |
+
col1, col2 = st.columns([1, 1])
|
296 |
+
with col1:
|
297 |
+
if st.button("Process PDF"):
|
298 |
+
with st.spinner("Processing PDF..."):
|
299 |
+
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
300 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
301 |
+
st.success("PDF processed! Ask away or summarize.")
|
302 |
+
st.session_state.messages = []
|
303 |
+
else:
|
304 |
+
st.error("Failed to process PDF.")
|
305 |
+
with col2:
|
306 |
+
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
307 |
+
with st.spinner("Summarizing..."):
|
308 |
+
summary = summarize_pdf(st.session_state.pdf_text)
|
309 |
+
st.session_state.messages.append({"role": "assistant", "content": summary})
|
310 |
+
st.markdown(summary, unsafe_allow_html=True)
|
311 |
+
|
312 |
+
# Chat interface
|
313 |
+
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
|
314 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
315 |
+
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):")
|
316 |
+
if prompt:
|
317 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
318 |
+
with st.chat_message("user"):
|
319 |
+
st.markdown(prompt)
|
320 |
+
with st.chat_message("assistant"):
|
321 |
+
with st.spinner('<div class="spinner">⏳</div>'):
|
322 |
+
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
323 |
+
st.markdown(answer, unsafe_allow_html=True)
|
324 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
325 |
+
|
326 |
+
# Display chat history
|
327 |
+
for message in st.session_state.messages:
|
328 |
+
with st.chat_message(message["role"]):
|
329 |
+
st.markdown(message["content"], unsafe_allow_html=True)
|
330 |
+
|
331 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
332 |
+
|
333 |
+
# Download chat history
|
334 |
+
if st.session_state.messages:
|
335 |
+
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
|
336 |
+
st.download_button("Download Chat History", chat_text, "chat_history.txt")
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
logger.error(f"App initialization failed: {str(e)}")
|
340 |
+
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")
|