Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,17 @@ import logging
|
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
import pdfplumber
|
|
|
|
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
10 |
from datasets import load_dataset
|
|
|
|
|
11 |
import re
|
|
|
12 |
|
13 |
# Setup logging for Spaces
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -34,7 +39,7 @@ def load_qa_pipeline():
|
|
34 |
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
35 |
if fine_tuned_pipeline:
|
36 |
return fine_tuned_pipeline
|
37 |
-
return pipeline("text2text-generation", model="google/flan-t5-
|
38 |
except Exception as e:
|
39 |
logger.error(f"QA model load error: {str(e)}")
|
40 |
st.error(f"QA model error: {str(e)}")
|
@@ -51,19 +56,19 @@ def load_summary_pipeline():
|
|
51 |
return None
|
52 |
|
53 |
# Load and prepare dataset (e.g., SQuAD)
|
54 |
-
@st.
|
55 |
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
|
56 |
logger.info(f"Loading dataset: {dataset_name}")
|
57 |
try:
|
58 |
-
dataset = load_dataset(dataset_name, split="train")
|
59 |
-
dataset = dataset.shuffle(seed=42).select(range(max_samples))
|
60 |
|
61 |
def preprocess(examples):
|
62 |
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])]
|
63 |
targets = examples['answers']['text']
|
64 |
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]}
|
65 |
|
66 |
-
dataset = dataset.map(preprocess, batched=True)
|
67 |
return dataset
|
68 |
except Exception as e:
|
69 |
logger.error(f"Dataset load error: {str(e)}")
|
@@ -74,7 +79,7 @@ def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
|
|
74 |
def fine_tune_qa_model(dataset):
|
75 |
logger.info("Starting fine-tuning")
|
76 |
try:
|
77 |
-
model_name = "google/flan-t5-
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
80 |
|
@@ -84,17 +89,17 @@ def fine_tune_qa_model(dataset):
|
|
84 |
model_inputs["labels"] = labels["input_ids"]
|
85 |
return model_inputs
|
86 |
|
87 |
-
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
88 |
|
89 |
training_args = TrainingArguments(
|
90 |
output_dir="./fine_tuned_model",
|
91 |
-
num_train_epochs=
|
92 |
per_device_train_batch_size=4,
|
93 |
save_steps=500,
|
94 |
logging_steps=100,
|
95 |
evaluation_strategy="no",
|
96 |
-
learning_rate=
|
97 |
-
fp16=False,
|
98 |
)
|
99 |
|
100 |
trainer = Trainer(
|
@@ -116,18 +121,18 @@ def fine_tune_qa_model(dataset):
|
|
116 |
def augment_vector_store(vector_store, dataset_name="squad", max_samples=500):
|
117 |
logger.info(f"Augmenting vector store with dataset: {dataset_name}")
|
118 |
try:
|
119 |
-
dataset = load_dataset(dataset_name, split="train").select(range(max_samples))
|
120 |
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])]
|
121 |
embeddings_model = load_embeddings_model()
|
122 |
if embeddings_model and vector_store:
|
123 |
-
embeddings = embeddings_model.encode(chunks)
|
124 |
vector_store.add_embeddings(zip(chunks, embeddings))
|
125 |
return vector_store
|
126 |
except Exception as e:
|
127 |
logger.error(f"Vector store augmentation error: {str(e)}")
|
128 |
return vector_store
|
129 |
|
130 |
-
# Process PDF with enhanced extraction
|
131 |
def process_pdf(uploaded_file):
|
132 |
logger.info("Processing PDF with enhanced extraction")
|
133 |
try:
|
@@ -136,6 +141,12 @@ def process_pdf(uploaded_file):
|
|
136 |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
137 |
for page in pdf.pages[:20]:
|
138 |
extracted = page.extract_text(layout=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
if extracted:
|
140 |
text += extracted + "\n"
|
141 |
for char in page.chars:
|
@@ -157,35 +168,34 @@ def process_pdf(uploaded_file):
|
|
157 |
if not text:
|
158 |
raise ValueError("No text extracted from PDF")
|
159 |
|
160 |
-
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=
|
161 |
-
text_chunks = text_splitter.split_text(text)[:
|
162 |
-
code_chunks = text_splitter.split_text(code_text)[:
|
163 |
|
164 |
embeddings_model = load_embeddings_model()
|
165 |
if not embeddings_model:
|
166 |
return None, None, text, code_text
|
167 |
|
168 |
text_vector_store = FAISS.from_embeddings(
|
169 |
-
zip(text_chunks, [embeddings_model.encode(chunk) for chunk in text_chunks]),
|
170 |
embeddings_model.encode
|
171 |
) if text_chunks else None
|
172 |
code_vector_store = FAISS.from_embeddings(
|
173 |
-
zip(code_chunks, [embeddings_model.encode(chunk) for chunk in code_chunks]),
|
174 |
embeddings_model.encode
|
175 |
) if code_chunks else None
|
176 |
|
177 |
-
# Augment text vector store with dataset
|
178 |
if text_vector_store:
|
179 |
text_vector_store = augment_vector_store(text_vector_store)
|
180 |
|
181 |
-
logger.info("PDF processed successfully
|
182 |
return text_vector_store, code_vector_store, text, code_text
|
183 |
except Exception as e:
|
184 |
logger.error(f"PDF processing error: {str(e)}")
|
185 |
st.error(f"PDF error: {str(e)}")
|
186 |
return None, None, "", ""
|
187 |
|
188 |
-
# Summarize PDF
|
189 |
def summarize_pdf(text):
|
190 |
logger.info("Generating summary")
|
191 |
try:
|
@@ -193,24 +203,28 @@ def summarize_pdf(text):
|
|
193 |
if not summary_pipeline:
|
194 |
return "Summary model unavailable."
|
195 |
|
196 |
-
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=
|
197 |
chunks = text_splitter.split_text(text)[:2]
|
198 |
summaries = []
|
199 |
|
200 |
for chunk in chunks:
|
201 |
-
summary = summary_pipeline(chunk[:
|
202 |
summaries.append(summary.strip())
|
203 |
|
204 |
combined_summary = " ".join(summaries)
|
205 |
if len(combined_summary.split()) > 150:
|
206 |
combined_summary = " ".join(combined_summary.split()[:150])
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
except Exception as e:
|
210 |
logger.error(f"Summary error: {str(e)}")
|
211 |
return f"Oops, something went wrong summarizing: {str(e)}"
|
212 |
|
213 |
-
# Answer question with
|
214 |
def answer_question(text_vector_store, code_vector_store, query):
|
215 |
logger.info(f"Processing query: {query}")
|
216 |
try:
|
@@ -223,18 +237,27 @@ def answer_question(text_vector_store, code_vector_store, query):
|
|
223 |
|
224 |
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
|
225 |
if is_code_query and code_vector_store:
|
226 |
-
|
|
|
|
|
|
|
227 |
|
228 |
vector_store = text_vector_store
|
229 |
if not vector_store:
|
230 |
return "No relevant content found for your query."
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
response = qa_pipeline(prompt)[0]['generated_text']
|
236 |
logger.info("Answer generated")
|
237 |
-
return f"
|
238 |
except Exception as e:
|
239 |
logger.error(f"Query error: {str(e)}")
|
240 |
return f"Sorry, something went wrong: {str(e)}"
|
@@ -245,22 +268,24 @@ try:
|
|
245 |
st.markdown("""
|
246 |
<style>
|
247 |
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
|
248 |
-
.sidebar { background-color: #f8f9fa; padding:
|
249 |
-
.chat-container { border: 1px solid #ddd; border-radius:
|
250 |
-
.stChatMessage { border-radius:
|
251 |
-
.user { background-color: #e6f3ff; align-self: flex-end; }
|
252 |
-
.assistant { background-color: #f0f0f0; }
|
253 |
-
.dark .user { background-color: #2a2a72; color: #fff; }
|
254 |
-
.dark .assistant { background-color: #2e2e2e; color: #fff; }
|
255 |
-
.stButton>button { background-color: #4CAF50; color: white; border: none; padding:
|
256 |
-
.stButton>button:hover { background-color: #45a049; }
|
257 |
-
pre { background-color: #f8f8f8; padding:
|
258 |
-
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding:
|
|
|
|
|
259 |
</style>
|
260 |
""", unsafe_allow_html=True)
|
261 |
|
262 |
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
263 |
-
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and
|
264 |
|
265 |
# Initialize session state
|
266 |
if "messages" not in st.session_state:
|
@@ -274,20 +299,26 @@ try:
|
|
274 |
if "code_text" not in st.session_state:
|
275 |
st.session_state.code_text = ""
|
276 |
|
277 |
-
# Sidebar with
|
278 |
with st.sidebar:
|
279 |
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
|
280 |
theme = st.radio("Theme", ["Light", "Dark"], index=0)
|
281 |
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0)
|
282 |
if st.button("Fine-Tune Model"):
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
st.markdown('</div>', unsafe_allow_html=True)
|
292 |
|
293 |
# PDF upload and processing
|
@@ -295,7 +326,11 @@ try:
|
|
295 |
col1, col2 = st.columns([1, 1])
|
296 |
with col1:
|
297 |
if st.button("Process PDF"):
|
|
|
298 |
with st.spinner("Processing PDF..."):
|
|
|
|
|
|
|
299 |
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
300 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
301 |
st.success("PDF processed! Ask away or summarize.")
|
@@ -304,7 +339,11 @@ try:
|
|
304 |
st.error("Failed to process PDF.")
|
305 |
with col2:
|
306 |
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
|
|
307 |
with st.spinner("Summarizing..."):
|
|
|
|
|
|
|
308 |
summary = summarize_pdf(st.session_state.pdf_text)
|
309 |
st.session_state.messages.append({"role": "assistant", "content": summary})
|
310 |
st.markdown(summary, unsafe_allow_html=True)
|
@@ -318,7 +357,11 @@ try:
|
|
318 |
with st.chat_message("user"):
|
319 |
st.markdown(prompt)
|
320 |
with st.chat_message("assistant"):
|
321 |
-
|
|
|
|
|
|
|
|
|
322 |
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
323 |
st.markdown(answer, unsafe_allow_html=True)
|
324 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
import pdfplumber
|
6 |
+
from PIL import Image
|
7 |
+
import pytesseract
|
8 |
from langchain.text_splitter import CharacterTextSplitter
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
12 |
from datasets import load_dataset
|
13 |
+
from rank_bm25 import BM25Okapi
|
14 |
+
from rouge_score import rouge_scorer
|
15 |
import re
|
16 |
+
import time
|
17 |
|
18 |
# Setup logging for Spaces
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
39 |
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
40 |
if fine_tuned_pipeline:
|
41 |
return fine_tuned_pipeline
|
42 |
+
return pipeline("text2text-generation", model="google/flan-t5-base", max_length=300)
|
43 |
except Exception as e:
|
44 |
logger.error(f"QA model load error: {str(e)}")
|
45 |
st.error(f"QA model error: {str(e)}")
|
|
|
56 |
return None
|
57 |
|
58 |
# Load and prepare dataset (e.g., SQuAD)
|
59 |
+
@st.cache_data(ttl=3600)
|
60 |
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
|
61 |
logger.info(f"Loading dataset: {dataset_name}")
|
62 |
try:
|
63 |
+
dataset = load_dataset(dataset_name, split="train[:80%]")
|
64 |
+
dataset = dataset.shuffle(seed=42).select(range(min(max_samples, len(dataset))))
|
65 |
|
66 |
def preprocess(examples):
|
67 |
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])]
|
68 |
targets = examples['answers']['text']
|
69 |
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]}
|
70 |
|
71 |
+
dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
|
72 |
return dataset
|
73 |
except Exception as e:
|
74 |
logger.error(f"Dataset load error: {str(e)}")
|
|
|
79 |
def fine_tune_qa_model(dataset):
|
80 |
logger.info("Starting fine-tuning")
|
81 |
try:
|
82 |
+
model_name = "google/flan-t5-base"
|
83 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
85 |
|
|
|
89 |
model_inputs["labels"] = labels["input_ids"]
|
90 |
return model_inputs
|
91 |
|
92 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=['input_text', 'target_text'])
|
93 |
|
94 |
training_args = TrainingArguments(
|
95 |
output_dir="./fine_tuned_model",
|
96 |
+
num_train_epochs=2,
|
97 |
per_device_train_batch_size=4,
|
98 |
save_steps=500,
|
99 |
logging_steps=100,
|
100 |
evaluation_strategy="no",
|
101 |
+
learning_rate=3e-5,
|
102 |
+
fp16=False, # Set True if GPU available
|
103 |
)
|
104 |
|
105 |
trainer = Trainer(
|
|
|
121 |
def augment_vector_store(vector_store, dataset_name="squad", max_samples=500):
|
122 |
logger.info(f"Augmenting vector store with dataset: {dataset_name}")
|
123 |
try:
|
124 |
+
dataset = load_dataset(dataset_name, split="train").select(range(min(max_samples, len(dataset))))
|
125 |
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])]
|
126 |
embeddings_model = load_embeddings_model()
|
127 |
if embeddings_model and vector_store:
|
128 |
+
embeddings = embeddings_model.encode(chunks, batch_size=32, show_progress_bar=False)
|
129 |
vector_store.add_embeddings(zip(chunks, embeddings))
|
130 |
return vector_store
|
131 |
except Exception as e:
|
132 |
logger.error(f"Vector store augmentation error: {str(e)}")
|
133 |
return vector_store
|
134 |
|
135 |
+
# Process PDF with enhanced extraction and OCR fallback
|
136 |
def process_pdf(uploaded_file):
|
137 |
logger.info("Processing PDF with enhanced extraction")
|
138 |
try:
|
|
|
141 |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
142 |
for page in pdf.pages[:20]:
|
143 |
extracted = page.extract_text(layout=False)
|
144 |
+
if not extracted: # OCR fallback for scanned PDFs
|
145 |
+
try:
|
146 |
+
img = page.to_image(resolution=150).original
|
147 |
+
extracted = pytesseract.image_to_string(img, config='--psm 6')
|
148 |
+
except Exception as ocr_e:
|
149 |
+
logger.warning(f"OCR failed: {str(ocr_e)}")
|
150 |
if extracted:
|
151 |
text += extracted + "\n"
|
152 |
for char in page.chars:
|
|
|
168 |
if not text:
|
169 |
raise ValueError("No text extracted from PDF")
|
170 |
|
171 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=400, chunk_overlap=80, keep_separator=True)
|
172 |
+
text_chunks = text_splitter.split_text(text)[:80]
|
173 |
+
code_chunks = text_splitter.split_text(code_text)[:40] if code_text else []
|
174 |
|
175 |
embeddings_model = load_embeddings_model()
|
176 |
if not embeddings_model:
|
177 |
return None, None, text, code_text
|
178 |
|
179 |
text_vector_store = FAISS.from_embeddings(
|
180 |
+
zip(text_chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in text_chunks]),
|
181 |
embeddings_model.encode
|
182 |
) if text_chunks else None
|
183 |
code_vector_store = FAISS.from_embeddings(
|
184 |
+
zip(code_chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in code_chunks]),
|
185 |
embeddings_model.encode
|
186 |
) if code_chunks else None
|
187 |
|
|
|
188 |
if text_vector_store:
|
189 |
text_vector_store = augment_vector_store(text_vector_store)
|
190 |
|
191 |
+
logger.info("PDF processed successfully")
|
192 |
return text_vector_store, code_vector_store, text, code_text
|
193 |
except Exception as e:
|
194 |
logger.error(f"PDF processing error: {str(e)}")
|
195 |
st.error(f"PDF error: {str(e)}")
|
196 |
return None, None, "", ""
|
197 |
|
198 |
+
# Summarize PDF with ROUGE metrics
|
199 |
def summarize_pdf(text):
|
200 |
logger.info("Generating summary")
|
201 |
try:
|
|
|
203 |
if not summary_pipeline:
|
204 |
return "Summary model unavailable."
|
205 |
|
206 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=400, chunk_overlap=50)
|
207 |
chunks = text_splitter.split_text(text)[:2]
|
208 |
summaries = []
|
209 |
|
210 |
for chunk in chunks:
|
211 |
+
summary = summary_pipeline(chunk[:400], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
212 |
summaries.append(summary.strip())
|
213 |
|
214 |
combined_summary = " ".join(summaries)
|
215 |
if len(combined_summary.split()) > 150:
|
216 |
combined_summary = " ".join(combined_summary.split()[:150])
|
217 |
+
|
218 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
|
219 |
+
scores = scorer.score(text[:400], combined_summary)
|
220 |
+
logger.info(f"ROUGE scores: {scores}")
|
221 |
+
|
222 |
+
return f"**Summary**:\n{combined_summary}\n\n**ROUGE-1**: {scores['rouge1'].fmeasure:.2f}"
|
223 |
except Exception as e:
|
224 |
logger.error(f"Summary error: {str(e)}")
|
225 |
return f"Oops, something went wrong summarizing: {str(e)}"
|
226 |
|
227 |
+
# Answer question with hybrid search
|
228 |
def answer_question(text_vector_store, code_vector_store, query):
|
229 |
logger.info(f"Processing query: {query}")
|
230 |
try:
|
|
|
237 |
|
238 |
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
|
239 |
if is_code_query and code_vector_store:
|
240 |
+
docs = code_vector_store.similarity_search(query, k=3)
|
241 |
+
code = "\n".join(doc.page_content for doc in docs)
|
242 |
+
explanation = qa_pipeline(f"Explain this code: {code[:500]}")[0]['generated_text']
|
243 |
+
return f"**Code**:\n```python\n{code}\n```\n**Explanation**:\n{explanation}"
|
244 |
|
245 |
vector_store = text_vector_store
|
246 |
if not vector_store:
|
247 |
return "No relevant content found for your query."
|
248 |
|
249 |
+
# Hybrid search: FAISS + BM25
|
250 |
+
text_chunks = [doc.page_content for doc in vector_store.similarity_search(query, k=10)]
|
251 |
+
bm25 = BM25Okapi([chunk.split() for chunk in text_chunks])
|
252 |
+
bm25_docs = bm25.get_top_n(query.split(), text_chunks, n=5)
|
253 |
+
faiss_docs = vector_store.similarity_search(query, k=5)
|
254 |
+
combined_docs = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:5]
|
255 |
+
context = "\n".join(combined_docs)
|
256 |
+
|
257 |
+
prompt = f"Use the following PDF content to answer the question accurately and concisely. Avoid speculation and focus on the provided context:\n\n{context}\n\nQuestion: {query}\nAnswer:"
|
258 |
response = qa_pipeline(prompt)[0]['generated_text']
|
259 |
logger.info("Answer generated")
|
260 |
+
return f"**Answer**:\n{response.strip()}\n\n**Source Context**:\n{context[:500]}..."
|
261 |
except Exception as e:
|
262 |
logger.error(f"Query error: {str(e)}")
|
263 |
return f"Sorry, something went wrong: {str(e)}"
|
|
|
268 |
st.markdown("""
|
269 |
<style>
|
270 |
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
|
271 |
+
.sidebar { background-color: #f8f9fa; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); }
|
272 |
+
.chat-container { border: 1px solid #ddd; border-radius: 12px; padding: 15px; height: 60vh; overflow-y: auto; margin-top: 20px; background-color: #fafafa; }
|
273 |
+
.stChatMessage { border-radius: 12px; padding: 12px; margin: 8px; max-width: 75%; transition: all 0.3s ease; }
|
274 |
+
.user { background-color: #e6f3ff; align-self: flex-end; border: 1px solid #b3d4fc; }
|
275 |
+
.assistant { background-color: #f0f0f0; border: 1px solid #ccc; }
|
276 |
+
.dark .user { background-color: #2a2a72; color: #fff; border: 1px solid #4a4ab2; }
|
277 |
+
.dark .assistant { background-color: #2e2e2e; color: #fff; border: 1px solid #4a4a4a; }
|
278 |
+
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 10px 20px; border-radius: 8px; font-weight: bold; }
|
279 |
+
.stButton>button:hover { background-color: #45a049; transform: scale(1.05); }
|
280 |
+
pre { background-color: #f8f8f8; padding: 12px; border-radius: 8px; overflow-x: auto; }
|
281 |
+
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 15px; border-radius: 8px; text-align: center; box-shadow: 0 2px 4px rgba(0,0,0,0.2); }
|
282 |
+
.progress-bar { background-color: #e0e0e0; border-radius: 5px; height: 10px; }
|
283 |
+
.progress-fill { background-color: #4CAF50; height: 100%; border-radius: 5px; transition: width 0.5s ease; }
|
284 |
</style>
|
285 |
""", unsafe_allow_html=True)
|
286 |
|
287 |
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
288 |
+
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast, accurate, and smooth!")
|
289 |
|
290 |
# Initialize session state
|
291 |
if "messages" not in st.session_state:
|
|
|
299 |
if "code_text" not in st.session_state:
|
300 |
st.session_state.code_text = ""
|
301 |
|
302 |
+
# Sidebar with controls
|
303 |
with st.sidebar:
|
304 |
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
|
305 |
theme = st.radio("Theme", ["Light", "Dark"], index=0)
|
306 |
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0)
|
307 |
if st.button("Fine-Tune Model"):
|
308 |
+
progress_bar = st.progress(0)
|
309 |
+
for i in range(100):
|
310 |
+
time.sleep(0.02)
|
311 |
+
progress_bar.progress(i + 1)
|
312 |
+
dataset = load_and_prepare_dataset(dataset_name=dataset_name)
|
313 |
+
if dataset:
|
314 |
+
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
315 |
+
if fine_tuned_pipeline:
|
316 |
+
st.success("Model fine-tuned successfully!")
|
317 |
+
else:
|
318 |
+
st.error("Fine-tuning failed.")
|
319 |
+
if st.button("Clear Chat"):
|
320 |
+
st.session_state.messages = []
|
321 |
+
st.experimental_rerun()
|
322 |
st.markdown('</div>', unsafe_allow_html=True)
|
323 |
|
324 |
# PDF upload and processing
|
|
|
326 |
col1, col2 = st.columns([1, 1])
|
327 |
with col1:
|
328 |
if st.button("Process PDF"):
|
329 |
+
progress_bar = st.progress(0)
|
330 |
with st.spinner("Processing PDF..."):
|
331 |
+
for i in range(100):
|
332 |
+
time.sleep(0.05)
|
333 |
+
progress_bar.progress(i + 1)
|
334 |
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
335 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
336 |
st.success("PDF processed! Ask away or summarize.")
|
|
|
339 |
st.error("Failed to process PDF.")
|
340 |
with col2:
|
341 |
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
342 |
+
progress_bar = st.progress(0)
|
343 |
with st.spinner("Summarizing..."):
|
344 |
+
for i in range(100):
|
345 |
+
time.sleep(0.02)
|
346 |
+
progress_bar.progress(i + 1)
|
347 |
summary = summarize_pdf(st.session_state.pdf_text)
|
348 |
st.session_state.messages.append({"role": "assistant", "content": summary})
|
349 |
st.markdown(summary, unsafe_allow_html=True)
|
|
|
357 |
with st.chat_message("user"):
|
358 |
st.markdown(prompt)
|
359 |
with st.chat_message("assistant"):
|
360 |
+
progress_bar = st.progress(0)
|
361 |
+
with st.spinner('<div class="spinner">⏳ Processing...</div>'):
|
362 |
+
for i in range(100):
|
363 |
+
time.sleep(0.01)
|
364 |
+
progress_bar.progress(i + 1)
|
365 |
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
366 |
st.markdown(answer, unsafe_allow_html=True)
|
367 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|