Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Set up device: use GPU if available, else CPU. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the fine-tuned model and tokenizer. | |
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") | |
# For CPU inference, convert the model to FP32 for better compatibility. | |
if device.type == "cpu": | |
model = model.float() | |
# Optionally compile the model for speed improvements (requires PyTorch 2.0+). | |
try: | |
model = torch.compile(model) | |
except Exception as e: | |
print("torch.compile optimization failed:", e) | |
def generate_sql(context: str, query: str) -> str: | |
""" | |
Generates a SQL query given the provided context and natural language query. | |
Constructs a prompt from the inputs, then performs deterministic generation | |
using beam search with repetition handling. | |
""" | |
prompt = f"""Context: | |
{context} | |
Query: | |
{query} | |
Response: | |
""" | |
# Tokenize the prompt with truncation and max length; move to device. | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device) | |
# Ensure the decoder start token is set. | |
if model.config.decoder_start_token_id is None: | |
model.config.decoder_start_token_id = tokenizer.pad_token_id | |
# Generate SQL output with no_grad to optimize CPU usage. | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
decoder_start_token_id=model.config.decoder_start_token_id, | |
max_new_tokens=100, | |
temperature=0.0, # Deterministic output | |
num_beams=5, | |
repetition_penalty=1.2, | |
early_stopping=True, | |
) | |
# Decode and clean the generated SQL statement. | |
generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query | |
return generated_sql | |
# Create Gradio interface with two input boxes: one for context and one for query. | |
iface = gr.Interface( | |
fn=generate_sql, | |
inputs=[ | |
gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."), | |
gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...") | |
], | |
outputs="text", | |
title="Text-to-SQL Generator", | |
description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement.", | |
theme="compact", | |
allow_flagging="never" | |
) | |
iface.launch() | |