Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,53 +2,61 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
|
5 |
-
# Set up device
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
-
# Load the fine-tuned model and tokenizer
|
9 |
-
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned"
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def generate_sql(context: str, query: str) -> str:
|
14 |
"""
|
15 |
Generates a SQL query given the provided context and natural language query.
|
16 |
Constructs a prompt from the inputs, then performs deterministic generation
|
17 |
-
|
18 |
"""
|
19 |
prompt = f"""Context:
|
20 |
{context}
|
21 |
-
|
22 |
Query:
|
23 |
{query}
|
24 |
-
|
25 |
Response:
|
26 |
"""
|
27 |
-
# Tokenize the prompt and move to device
|
28 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
29 |
|
30 |
-
# Ensure
|
31 |
if model.config.decoder_start_token_id is None:
|
32 |
model.config.decoder_start_token_id = tokenizer.pad_token_id
|
33 |
|
34 |
-
# Generate
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
-
# Decode and clean the generated SQL statement
|
46 |
generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
47 |
-
generated_sql = generated_sql.split(";")[0] + ";" #
|
48 |
-
|
49 |
return generated_sql
|
50 |
|
51 |
-
# Create Gradio interface with two input boxes: one for context and one for query
|
52 |
iface = gr.Interface(
|
53 |
fn=generate_sql,
|
54 |
inputs=[
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
|
5 |
+
# Set up device: use GPU if available, else CPU.
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
+
# Load the fine-tuned model and tokenizer.
|
9 |
+
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned"
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
12 |
|
13 |
+
# For CPU inference, convert the model to FP32 for better compatibility.
|
14 |
+
if device.type == "cpu":
|
15 |
+
model = model.float()
|
16 |
+
|
17 |
+
# Optionally compile the model for speed improvements (requires PyTorch 2.0+).
|
18 |
+
try:
|
19 |
+
model = torch.compile(model)
|
20 |
+
except Exception as e:
|
21 |
+
print("torch.compile optimization failed:", e)
|
22 |
+
|
23 |
def generate_sql(context: str, query: str) -> str:
|
24 |
"""
|
25 |
Generates a SQL query given the provided context and natural language query.
|
26 |
Constructs a prompt from the inputs, then performs deterministic generation
|
27 |
+
using beam search with repetition handling.
|
28 |
"""
|
29 |
prompt = f"""Context:
|
30 |
{context}
|
|
|
31 |
Query:
|
32 |
{query}
|
|
|
33 |
Response:
|
34 |
"""
|
35 |
+
# Tokenize the prompt with truncation and max length; move to device.
|
36 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
37 |
|
38 |
+
# Ensure the decoder start token is set.
|
39 |
if model.config.decoder_start_token_id is None:
|
40 |
model.config.decoder_start_token_id = tokenizer.pad_token_id
|
41 |
|
42 |
+
# Generate SQL output with no_grad to optimize CPU usage.
|
43 |
+
with torch.no_grad():
|
44 |
+
generated_ids = model.generate(
|
45 |
+
input_ids=inputs["input_ids"],
|
46 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
47 |
+
max_new_tokens=100,
|
48 |
+
temperature=0.0, # Deterministic output
|
49 |
+
num_beams=5,
|
50 |
+
repetition_penalty=1.2,
|
51 |
+
early_stopping=True,
|
52 |
+
)
|
53 |
|
54 |
+
# Decode and clean the generated SQL statement.
|
55 |
generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
56 |
+
generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query
|
|
|
57 |
return generated_sql
|
58 |
|
59 |
+
# Create Gradio interface with two input boxes: one for context and one for query.
|
60 |
iface = gr.Interface(
|
61 |
fn=generate_sql,
|
62 |
inputs=[
|