aarohanverma commited on
Commit
6d95389
·
verified ·
1 Parent(s): 9d0df30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -3
app.py CHANGED
@@ -39,7 +39,7 @@ Response:
39
  if model.config.decoder_start_token_id is None:
40
  model.config.decoder_start_token_id = tokenizer.pad_token_id
41
 
42
- # Generate SQL output with no_grad to optimize CPU usage.
43
  with torch.no_grad():
44
  generated_ids = model.generate(
45
  input_ids=inputs["input_ids"],
@@ -56,7 +56,29 @@ Response:
56
  generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query
57
  return generated_sql
58
 
59
- # Create Gradio interface with two input boxes: one for context and one for query.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  iface = gr.Interface(
61
  fn=generate_sql,
62
  inputs=[
@@ -65,9 +87,10 @@ iface = gr.Interface(
65
  ],
66
  outputs="text",
67
  title="Text-to-SQL Generator",
68
- description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement.",
69
  theme="compact",
70
  allow_flagging="never"
71
  )
72
 
73
  iface.launch()
 
 
39
  if model.config.decoder_start_token_id is None:
40
  model.config.decoder_start_token_id = tokenizer.pad_token_id
41
 
42
+ # Generate SQL output using no_grad for optimized CPU usage.
43
  with torch.no_grad():
44
  generated_ids = model.generate(
45
  input_ids=inputs["input_ids"],
 
56
  generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query
57
  return generated_sql
58
 
59
+ # Guide text with detailed instructions and an example.
60
+ guide_text = """
61
+ # Text-to-SQL Inference App Guide
62
+ **Overview:**
63
+ This app uses a fine-tuned FLAN-T5 model to generate SQL queries based on your inputs.
64
+
65
+ **How to Use:**
66
+ - **Context:** Enter your database schema (table definitions, DDL statements, sample data).
67
+ - **Query:** Enter a natural language query describing the desired SQL operation.
68
+ - Click **Generate SQL** to see the model-generated SQL query.
69
+
70
+ **Example:**
71
+ - **Context:**
72
+ CREATE TABLE students (id INT PRIMARY KEY, name VARCHAR(100), age INT, grade CHAR(1)); INSERT INTO students (id, name, age, grade) VALUES (1, 'Alice', 14, 'A'), (2, 'Bob', 15, 'B');
73
+
74
+ - **Query:**
75
+ Retrieve the names of students who are 15 years old.
76
+
77
+ The generated SQL might look like:
78
+ SELECT name FROM students WHERE age = 15;
79
+ """
80
+
81
+ # Create Gradio interface.
82
  iface = gr.Interface(
83
  fn=generate_sql,
84
  inputs=[
 
87
  ],
88
  outputs="text",
89
  title="Text-to-SQL Generator",
90
+ description=guide_text,
91
  theme="compact",
92
  allow_flagging="never"
93
  )
94
 
95
  iface.launch()
96
+