Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# 加载模型 | |
model_name = "deepseek-ai/deepseek-coder-1.3b-base" # 可替换为 "deepseek-ai/deepseek-coder-1.3b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, # 使用 FP16 减少内存 | |
device_map="cpu", # 强制 CPU | |
trust_remote_code=True, | |
low_cpu_mem_usage=True | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# 使用聊天模板格式化输入(base 模型可能无模板,需调整) | |
try: | |
input_text = tokenizer.apply_chat_template(messages, tokenize=False) | |
except: | |
# 如果 base 模型无聊天模板,直接拼接 | |
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) | |
inputs = tokenizer(input_text, return_tensors="pt").to("cpu") | |
# 生成响应 | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield response | |
# Gradio 界面 | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly coding assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), # 降低以加快 CPU 推理 | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |