File size: 9,552 Bytes
9ac0d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import streamlit as st
from gotLibrary import GotLib
import plotly.express as px
import pandas as pd
import matplotlib.pyplot as plt
class plot_type:
def __init__(self,data):
self.data = data
self.fig=None
self.update_layout=None
def bar(self,x,y,color):
self.fig=px.bar(self.data,x=x,y=y,color=color)
def pie(self,x,y):
self.fig = px.pie(self.data,values=x,names=y)
def set_title(self,title):
self.fig.update_layout(
title=f"{title}",
yaxis=dict(tickmode="linear"),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
font=dict(color='white',size=18))
def set_title_x(self,title):
self.fig.update_layout(
title=f"{title}",
xaxis=dict(tickmode="linear"),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
font=dict(color='white',size=18))
def set_title_pie(self,title):
self.fig.update_layout(title=title,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
font=dict(color='white',size=18))
def plot(self):
st.write(self.fig)
class slide_bar:
value=4
def __init__(self,title,x,y):
self.title = title
self.x=x
self.y=y
self.slide_bar = None
def set(self):
self.slide_bar = st.slider(self.title,self.x,self.y)
slide_bar.value=self.slide_bar
class select_box:
value="tyrion"
def __init__(self,data):
self.data=data
self.box=None
def place(self,title,key):
header(title)
self.box = st.selectbox(str(key),self.data)
select_box.value=self.box
def title(text,size,color):
st.markdown(f'<h1 style="font-weight:bolder;font-size:{size}px;color:{color};text-align:center;">{text}</h1>',unsafe_allow_html=True)
def header(text):
st.markdown(f"<p style='color:white;'>{text}</p>",unsafe_allow_html=True)
@st.cache(persist=True,suppress_st_warning=True)
def load_data():
df = pd.read_csv('final_data.csv')
df = df.iloc[:,1:]
return df
#loading the data
df = load_data()
#intializing the GotLib object
got = GotLib(df)
with open("styles/style.css") as f:
st.markdown(f'<style>{f.read()}</style>',unsafe_allow_html=True)
#-------------------------------Header-----------------------
st.markdown('<h1 style="text-align:center;color:white;font-weight:bolder;font-size:100px;">GAME<br>OF<br>THRONES</h1>',unsafe_allow_html=True)
# st.markdown('<h1 style="text-align:center;color:white;background-image:url("m1.png");">An analysis..</h1>',unsafe_allow_html=True)
st.markdown('<h2 style="text-align:center;color:white;">An analysis..</h2>',unsafe_allow_html=True)
st.image('images/got1.jpg',width=700)
st.markdown('### This is an analysis based project on the tv series game of thrones')
#------------------------Module 1--------------------------
title("Top characters based on number of words spoken in a season",60,"white")
header('season')
option_1_s = st.selectbox('',[1,2,3,4,5,6,7,8])
header("number of results")
num = st.slider("",4,50)
temp_data = got.show_top_by_season(option_1_s)
number=10
bar1 = plot_type(temp_data[-num:])
bar1.bar("spoken_words","character","spoken_words")
bar1.set_title(f"Season {option_1_s}")
bar1.plot()
#-----------------------Module 2------------------------------
title("Overall top characters based on number of spoken words",60,'white')
header("number of results")
num1 = st.slider("",5,60)
temp_data1 = got.get_overall_top()
bar2 = plot_type(temp_data1[-num1:])
bar2.bar("words","character","words")
bar2.set_title("Overall Top")
bar2.plot()
#------------------------Module 3-----------------------------
title("Character's number of dialogues over the seasons",60,"white")
st.markdown('### NOTE: displaying only top 100 characters in drop downs as there are more than 500+ it would be awkward to display it all :)')
characters = got.get_data_seasons()
stb1 = select_box(characters)
stb1.place("character",0)
@st.cache(persist=True)
def sbyc(df,stb1):
return got.show_bar_by_character_allSeason(stb1)
t_data = sbyc(df,stb1.value)
bar0 = plot_type(t_data)
bar0.bar("season","spoken_words","spoken_words")
# bar0.update_layout(title=f"{stbl.value}")
bar0.set_title_x(stb1.value)
bar0.plot()
#----------------------Module 4----------------------------------
title("Percentage of a character's performance in seasons",60,"white")
st.write("what is the character's distribution of his/her/(uhh. you know the rest) dialogue percentage over the seasons")
stb2 = select_box(characters)
stb2.place("character",9)
t_data1 = got.cal_importance(df,stb2.value)
pie2 = plot_type(t_data1)
pie2.pie("imp","season")
pie2.set_title_pie(stb2.value)
pie2.plot()
#-------------------------Module 5-----------------------------
title('Most number of words spoken by a character',60,'white')
st.markdown('#### removing all the stop words in the sense common words.')
select_box1 = select_box(characters)
select_box1.place('character',1)
header("range")
num2 = slide_bar("",5,55)
num2.set()
temp_data2,size = got.get_most_spokenwords_by_character(df,select_box1.value,num2.value)
bar3 = plot_type(temp_data2)
bar3.bar("frequency","words","frequency")
bar3.set_title(f"{select_box1.value.capitalize()} total words spoken - {size}")
bar3.plot()
#--------------------------WORD_CLOUD---------------------------
title("WordCloud of a character",60,'white')
st.markdown('#### It may take a few seconds to load the result, so please hold on to your dragons.')
select_box2 = select_box(characters)
select_box2.place('character',2)
header('range')
sl = slide_bar('',50,200)
sl.set()
@st.cache(persist=True,suppress_st_warning=True)
def swc(df,v1,v2):
return got.show_word_cloud(df,v1,v2)
wc = swc(df,sl.value,select_box2.value)
fig = plt.figure(figsize=(8,8))
plt.imshow(wc,interpolation="bilinear")
plt.axis('off')
plt.title(select_box2.value,fontsize=18)
plt.tight_layout()
st.pyplot(fig)
#--------------------------Module 4------------------------------
title("Emotional characteristics",70,"white")
st.write("The below pie chart depicts the distribution of emotions of a character.")
st.write('Note: This is purely my calculations based on the text-corpus I created and also based on the words used by a character.')
select_box3 = select_box(characters)
select_box3.place('character',3)
temp_data3 = got.cal_character(select_box3.value)
pie1 = plot_type(temp_data3['data'])
pie1.pie(temp_data3['y'],temp_data3['x'])
pie1.set_title_pie(select_box3.value)
pie1.plot()
#---------------------------Module 5--------------------------
title("Most used name by a character",50,"white")
stb = select_box(characters[:50])
stb.place("character",4)
temp_df = got.most_name(stb.value)
num_range = temp_df.shape[0]
rangesl = slide_bar("",1,num_range)
rangesl.set()
bar5 = plot_type(temp_df.iloc[-rangesl.value:,:])
bar5.bar("number","name","number")
bar5.set_title(stb.value)
bar5.plot()
#----------------------Module 6----------------------------------
title('Similar Characters',60,'white')
st.write('The chart shows characters who are similar to a character with their similarity precentage, based on their similar usage of words, this same alogrithm is also used in movie recommender systems.')
st.write('Note: This is very much experimental and purely based on the scripts. And only depends on script text and nothing else.')
ch=characters[:]
ch1 = select_box(ch)
ch1.place('character',5)
val=ch1.value
results = got.get_similar_character(val)
colors = ['rgb(0,255,42)','rgb(221, 235, 30)','rgb(224, 91, 43)']
char = list(results['character'])
score = list(results['similarity'])
i=0
for name,sc in zip(char,score):
st.markdown(f"<h3 style='text-align:center;color:rgb(196, 196, 196);'><span style='font-weight:bolder;color:{colors[i]};font-size:50px;'>{name} </span> [{sc}%]</h3>",unsafe_allow_html=True)
i+=1
#----------------------------------------------------------------------THE END---------------------------------------------------------------------
st.write(' ')
st.markdown('#### The dataset here is created from the scripts, involved a lot of data cleaning,wrangling and pre-processing!. Took a lot of time to prepare it!. And is 85% accurate.')
st.write('check the box below to peak at the dataset')
if st.checkbox('',False):
st.subheader("Game_of_Thrones")
st.write(df)
st.write('')
st.write('')
st.markdown('<h3 style="text-align:center;">Made By <span style="color:#4f9bce;font-weight:bolder;font-size:40px;">Mario π</span></h3>',unsafe_allow_html=True)
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:rgb(96, 235, 133);" href="https://github.com/Mario-Vishal">-> GitHub <-</a></h2>',unsafe_allow_html=True)
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:rgb(20, 166, 219);" href="https://www.linkedin.com/in/mario-vishal">-> Linkedin <-</a></h2>',unsafe_allow_html=True)
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:red;" href="mailto:[email protected]">-> Contact Me <-</a></h2>',unsafe_allow_html=True)
|