LLaMa3_RKPCase / app.py
abdfajar707's picture
Update app.py
9fc7678 verified
raw
history blame
5.77 kB
import torch
import gradio as gr
import os
from threading import Thread
from typing import Iterator
from transformers import (
AutoModelForCausalLM,
BitsAndBytesConfig,
GenerationConfig,
AutoTokenizer,
TextIteratorStreamer,
)
from peft import AutoPeftModelForCausalLM
#deklarasi
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
#alpaca_prompt = """Berikut adalah instruksi yang deskripsikan tugas dan sepasang input dan konteksnya. Tulis response sesuai dengan permintaan.
### Instruction:
{}
### Input:
{}
### Response:
#{}"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
model_id = "abdfajar707/llama3_8B_lora_model_rkp_pn2025_v3"
#tokenizer = LlamaTokenizer.from_pretrained(model_id)
#model, tokenizer = AutoModelForCausalLM.from_pretrained(
# model_id,
# device_map="auto",
# quantization_config=BitsAndBytesConfig(load_in_8bit=True),
#)
model = AutoPeftModelForCausalLM.from_pretrained(
model_id, # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = load_in_4bit,
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
quantization_config=BitsAndBytesConfig(load_in_8bit=True)
)
model.config.sliding_window = 4096
model.eval()
#@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
DESCRIPTION = '''
<div style="padding: 5px; text-align: left; display: flex; flex-direction: column; align-items: left;">
<img src="https://sdgs.bappenas.go.id/repository/assets/bappenas_logo_square.png" style="width: 40%; max-width: 200px; height: auto; opacity: 0.55; ">
<h2 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">AI-Interlinked System/Bappenas GPT</h2>
</div>
'''
LICENSE = """
<p/>
---
Dibangun dari Meta Llama 3
"""
PLACEHOLDER = """
<div style="padding: 100px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn3.iconfinder.com/data/icons/human-resources-flat-3/48/150-4096.png" style="width: 1000; max-width: 200px; height: auto; opacity: 0.55; ">
<h2 style="font-size: 20px; margin-bottom: 2px; opacity: 0.55;">Asisten Virtual Perencana</h2>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Silakan mulai tanya...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Interlinked Sytem ChatInterface')
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Apa yang dimaksud dengan RPJMN"],
["Jelaskan tentang RPJMN 2020-2024"],
["Apa peran RKP 2021 dan 20211 dalam RPJM 2020-2024"],
["Apa saja program prioritas RPJMN 2020-2024"],
],
)
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()