trip_planner / app.py
Abdulla Fahem
Add application file
7bdf2e1
raw
history blame
15.7 kB
import os
import sys
import torch
import pandas as pd
import streamlit as st
from datetime import datetime
from transformers import (
T5ForConditionalGeneration,
T5Tokenizer,
Trainer,
TrainingArguments,
DataCollatorForSeq2Seq
)
from torch.utils.data import Dataset
import random
# Ensure reproducibility
torch.manual_seed(42)
random.seed(42)
# Environment setup
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
class TravelDataset(Dataset):
def __init__(self, data, tokenizer, max_length=512):
"""
Initialize the dataset for travel planning
Parameters:
- data: DataFrame containing travel planning data
- tokenizer: Tokenizer for encoding input and output
- max_length: Maximum sequence length
"""
self.tokenizer = tokenizer
self.data = data
self.max_length = max_length
# Print dataset information
print(f"Dataset loaded with {len(data)} samples")
print("Columns:", list(data.columns))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
"""
Prepare an individual training sample
Returns a dictionary with input_ids, attention_mask, and labels
"""
row = self.data.iloc[idx]
# Prepare input text
input_text = self.format_input_text(row)
# Prepare target text (travel plan)
target_text = row['target']
# Tokenize inputs
input_encodings = self.tokenizer(
input_text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
# Tokenize targets
target_encodings = self.tokenizer(
target_text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
return {
'input_ids': input_encodings['input_ids'].squeeze(),
'attention_mask': input_encodings['attention_mask'].squeeze(),
'labels': target_encodings['input_ids'].squeeze()
}
@staticmethod
def format_input_text(row):
"""
Format input text for the model
This method creates a prompt that the model will use to generate a travel plan
"""
# Format the input text based on available columns
destination = row.get('destination', 'Unknown')
days = row.get('days', 3)
budget = row.get('budget', 'Moderate')
interests = row.get('interests', 'Culture, Food')
return f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {interests}"
def load_dataset():
"""
Load the travel planning dataset from HuggingFace
Returns:
- pandas DataFrame with the dataset
"""
try:
# Load dataset from CSV
data = pd.read_csv("hf://datasets/osunlp/TravelPlanner/train.csv")
# Basic data validation
required_columns = ['destination', 'days', 'budget', 'interests', 'target']
for col in required_columns:
if col not in data.columns:
raise ValueError(f"Missing required column: {col}")
# Print dataset info
print("Dataset successfully loaded")
print(f"Total samples: {len(data)}")
print("Columns:", list(data.columns))
return data
except Exception as e:
print(f"Error loading dataset: {e}")
sys.exit(1)
def train_model():
"""
Train the T5 model for travel planning
Returns:
- Trained model
- Tokenizer
"""
try:
# Load dataset
data = load_dataset()
# Initialize model and tokenizer
print("Initializing T5 model and tokenizer...")
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
model = T5ForConditionalGeneration.from_pretrained('t5-base')
# Split data into training and validation sets
train_size = int(0.8 * len(data))
train_data = data[:train_size]
val_data = data[train_size:]
print(f"Training set size: {len(train_data)}")
print(f"Validation set size: {len(val_data)}")
# Create datasets
train_dataset = TravelDataset(train_data, tokenizer)
val_dataset = TravelDataset(val_data, tokenizer)
# Training arguments
training_args = TrainingArguments(
output_dir=f"./travel_planner_model_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
evaluation_strategy="steps",
eval_steps=50,
save_steps=100,
load_best_model_at_end=True,
)
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
padding=True
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
)
# Train the model
print("Starting model training...")
trainer.train()
# Save the model and tokenizer
model_path = "./trained_travel_planner"
model.save_pretrained(model_path)
tokenizer.save_pretrained(model_path)
print("Model training completed and saved!")
return model, tokenizer
except Exception as e:
print(f"Error during model training: {str(e)}")
return None, None
def generate_travel_plan(destination, days, interests, budget, model, tokenizer):
"""
Generate a travel plan using the trained model
Parameters:
- destination: Travel destination
- days: Trip duration
- interests: User's interests
- budget: Trip budget level
- model: Trained T5 model
- tokenizer: Model tokenizer
Returns:
- Generated travel plan
"""
try:
# Format input prompt
prompt = f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {', '.join(interests)}"
# Tokenize input
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=512,
padding="max_length",
truncation=True
)
# Move to GPU if available
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
model = model.cuda()
# Generate output
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
no_repeat_ngram_size=3,
num_return_sequences=1
)
# Decode and return the travel plan
travel_plan = tokenizer.decode(outputs[0], skip_special_tokens=True)
return travel_plan
except Exception as e:
print(f"Error generating travel plan: {e}")
return "Could not generate travel plan."
def main():
st.set_page_config(
page_title="AI Travel Planner",
page_icon="✈️",
layout="wide"
)
st.title("✈️ AI Travel Planner")
st.markdown("### Plan your perfect trip with AI assistance!")
# Add training button in sidebar only
with st.sidebar:
st.header("Model Management")
if st.button("Retrain Model"):
with st.spinner("Training new model... This will take a while..."):
model, tokenizer = train_model()
if model is not None:
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
st.success("Model training completed!")
# Add model information
st.markdown("### Model Information")
if 'model' in st.session_state:
st.success("βœ“ Model loaded")
st.info("""
This model was trained on travel plans for:
- Destinations from HuggingFace dataset
- Flexible days duration
- Multiple budget levels
- Various interest combinations
""")
# Load or train model
if 'model' not in st.session_state:
with st.spinner("Loading AI model... Please wait..."):
model, tokenizer = train_model() # Changed from load_or_train_model
if model is None or tokenizer is None:
st.error("Failed to load/train the AI model. Please try again.")
return
st.session_state.model = model
st.session_state.tokenizer = tokenizer
# Create two columns for input form
col1, col2 = st.columns([2, 1])
with col1:
# Input form in a card-like container
with st.container():
st.markdown("### 🎯 Plan Your Trip")
# Destination and Duration row
dest_col, days_col = st.columns(2)
with dest_col:
destination = st.text_input(
"🌍 Destination",
placeholder="e.g., Paris, Tokyo, New York...",
help="Enter the city you want to visit"
)
with days_col:
days = st.slider(
"πŸ“… Number of days",
min_value=1,
max_value=14,
value=3,
help="Select the duration of your trip"
)
# Budget and Interests row
budget_col, interests_col = st.columns(2)
with budget_col:
budget = st.selectbox(
"πŸ’° Budget Level",
["Budget", "Moderate", "Luxury"],
help="Select your preferred budget level"
)
with interests_col:
interests = st.multiselect(
"🎯 Interests",
["Culture", "History", "Food", "Nature", "Shopping",
"Adventure", "Relaxation", "Art", "Museums"],
["Culture", "Food"],
help="Select up to three interests to personalize your plan"
)
with col2:
# Tips and information
st.markdown("### πŸ’‘ Travel Tips")
st.info("""
- Choose up to 3 interests for best results
- Consider your travel season
- Budget levels affect activity suggestions
- Plans are customizable after generation
""")
# Generate button centered
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
generate_button = st.button(
"🎨 Generate Travel Plan",
type="primary",
use_container_width=True
)
if generate_button:
if not destination:
st.error("Please enter a destination!")
return
if not interests:
st.error("Please select at least one interest!")
return
if len(interests) > 3:
st.warning("For best results, please select up to 3 interests.")
with st.spinner("πŸ€– Creating your personalized travel plan..."):
travel_plan = generate_travel_plan(
destination,
days,
interests,
budget,
st.session_state.model,
st.session_state.tokenizer
)
# Create an expander for the success message with trip overview
with st.expander("✨ Your travel plan is ready! Click to see trip overview", expanded=True):
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Destination", destination)
with col2:
if days == 1:
st.metric("Duration", f"{days} day")
else:
st.metric("Duration", f"{days} days")
with col3:
st.metric("Budget", budget)
st.write("**Selected Interests:**", ", ".join(interests))
# Display the plan in tabs with improved styling
plan_tab, summary_tab = st.tabs(["πŸ“‹ Detailed Itinerary", "ℹ️ Trip Summary"])
with plan_tab:
# Add a container for better spacing
with st.container():
# Add trip title
st.markdown(f"## 🌍 {days}-Day Trip to {destination}")
st.markdown("---")
# Display the formatted plan
st.markdown(travel_plan)
# Add export options in a nice container
with st.container():
st.markdown("---")
col1, col2 = st.columns([1, 4])
with col1:
st.download_button(
label="πŸ“₯ Download Plan",
data=travel_plan,
file_name=f"travel_plan_{destination.lower().replace(' ', '_')}.md",
mime="text/markdown",
use_container_width=True
)
with summary_tab:
# Create three columns for summary information with cards
with st.container():
st.markdown("## Trip Overview")
sum_col1, sum_col2, sum_col3 = st.columns(3)
with sum_col1:
with st.container():
st.markdown("### πŸ“ Destination Details")
st.markdown(f"**Location:** {destination}")
if days == 1:
st.markdown(f"**Duration:** {days} day")
else:
st.markdown(f"**Duration:** {days} days")
st.markdown(f"**Budget Level:** {budget}")
with sum_col2:
with st.container():
st.markdown("### 🎯 Trip Focus")
st.markdown("**Selected Interests:**")
for interest in interests:
st.markdown(f"- {interest}")
with sum_col3:
with st.container():
st.markdown("### ⚠️ Travel Tips")
st.info(
"β€’ Verify opening hours\n"
"β€’ Check current prices\n"
"β€’ Confirm availability\n"
"β€’ Consider seasonal factors"
)
if __name__ == "__main__":
main()